Abstract
This paper deals with the impact of the design parameters on the static workspace and the stiffness range of a planar 3-DoF tensegrity mechanism. The static model is established through the energetic approach and the stiffness is derived analytically along the 3-DoF of the mechanism. The design parameters considered here are the spring stiffness and the location of the mechanism attachment points to the base. Results on the impact of these parameters are finally analyzed. This analysis constitutes a first step towards the geometric optimization of tensegrity mechanisms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azadi, M., Behzadipour, S., Faulkner, G.: Variable stiffness spring using tensegrity prisms. J. Mech. Robot. ASME (2010). https://doi.org/10.1115/1.4001776
Boehler, Q., Charpentier, I., Vedrines, M.S., Renaud, P.: Definition and computation of tensegrity mechanism workspace. J. Mech. Robot. (2015). https://doi.org/10.1115/1.4029809
Boehler, Q., Zompas, A., Vedrines, M., Abdelaziz, S., Renaud, P., Poignet, P.: Experiments on a variable stiffness tensegrity mechanism for an MR-compatible needle holder. Comput./Robot Assist. Surg. (2015)
Bricault, I., Jauniaux, E., Zemiti, N., Fouard, C., Taillant, E., Dorandeu, F., Cinquin, P.: Light puncture robot for CT and MRI interventions. IEEE Eng. Med. Biol. Mag. 27 (2008). https://doi.org/10.1109/EMB.2007.910262
Friesen, J., Pogue, A., Bewley, T., De Oliveira, M., Robert, S., Sunspiral, V.: Ductt: a tensegrity robot for exploring duct systems. In: IEEE International Conference on Robotics and Automation (ICRA) (2014). https://doi.org/10.1109/IROS.2016.7759811
Fuller, B. (ed.): Synergetics, Explorations in the Geometry of Thinking. Collier Macmillan (1975)
Furet, M., Chablat, D., Fasquelle, B., Khanna, P., Chevallereau, C., Wenger, P.: Prototype of a tensegrity manipulator to mimic bird necks. In: 24ème Congrès Français de Mécanique. Brest, France (2019)
Furet, M., Wenger, P.: Kinetostatic analysis and actuation strategy of a planar tensegrity 2–x manipulator. J. Mech. Robot. (2019). https://doi.org/10.1115/1.4044209
Gagliardini, L., Gouttefarde, M., Caro, S.: Determination of a dynamic feasible workspace for cable-driven parallel robots. In: Advances in Robot Kinematics 2016, Springer Proceedings in Advanced Robotics (2017)
Gouttefarde, M., Merlet, J.P., Daney, D.: Wrench-feasible workspace of parallel cable-driven mechanisms. In: IEEE International Conference on Robotics and Automation. Roma, Italy (2007). https://doi.org/10.1109/ROBOT.2007.363195
Henrickson, J.V., Valaseky, J., Skelton, R.: Shape control of tensegrity structures. In: AIAA SPACE 2015 Conference and Exposition. Pasadena, USA (2015). https://doi.org/10.2514/6.2015-4502
Ji, Z., Li, T., Lin, M.: Kinematics, singularity, and workspaces of a planar 4-bar tensegrity mechanism. J. Robot. (2014). https://doi.org/10.1155/2014/967251
Jing, Y.Z., Ohsaki, M. (eds.): Tensegrity Structures Form, Stability and Symmetry. Springer, Heidelberg (2015). https://doi.org/10.1007/978-4-431-54813-3
Lessardand, S., Castro, D., Asper, W., Chopra, S.D., Baltaxe-Admony, L., Teodorescu, M., SunSpiral, V., Agogino, A.: A bio-inspired tensegrity manipulator with multi-DOF, structurally compliant joints. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5515–5520 (2016). https://doi.org/10.1109/IROS.2016.7759811
Manríquez Padilla, C.G., Zavala Pérez, O.A., Pérez Soto, G.I., Rodríguez Reséndiz, J., Camarillo Gómez, K.A.: Form-finding analysis of a class 2 tensegrity robot. Appl. Sci. (2019). https://doi.org/10.3390/app9152948
Roberts, R.G., Graham, T., Lippitt, T.: On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. J. Robot. Syst. (1998). https://doi.org/10.1002/(SICI)1097-4563(199810)15:10(581::AID-ROB4)3.0.CO;2-P
Skelton, R., Adhikari, R., Pinaud, J.P., Chan, W.: An introduction to the mechanics of tensegrity structures. In: Conference on Decision and Control. Florida, USA (2001). https://doi.org/10.1109/.2001.98086
Wenger, P., Chablat, D.C.: Kinetostatic analysis and solution classification of a planar tensegrity mechanism. In: Computational Kinematics, pp. 422–431. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-60867-948
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cruz-Martinez, G.M., Vilchis, JC.A., Gonzalez, A.V., Abdelaziz, S., Poignet, P. (2021). Design Parameters Influence on the Static Workspace and the Stiffness Range of a Tensegrity Mechanism. In: Lenarčič, J., Siciliano, B. (eds) Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-50975-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-50975-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50974-3
Online ISBN: 978-3-030-50975-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)