Skip to main content

Modeling and Simulation of Hybrid Soft Robots Using Finite Element Methods: Brief Overview and Benefits

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2020 (ARK 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 15))

Included in the following conference series:

Abstract

Mathematical modeling of hybrid soft robots is complicated by the description of the complex shape that they undergone when subject to actuation and external loads. It might be noticed that several approaches have been used so far in robotics, and the problem is not yet fully solved. This short paper aims at presenting an overview of modeling and simulation approaches for soft robots based on finite element methods. Benefits and perspectives of future directions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.3ds.com/.

  2. 2.

    https://project.inria.fr/softrobot/.

References

  1. Della Santina, C., Piazza, C., Gasparri, G.M., Bonilla, M., Catalano, M.G., Grioli, G., Garabini, M., Bicchi, A.: The quest for natural machine motion: an open platform to fast-prototyping articulated soft robots. IEEE Robot. Autom. Mag. 24(1), 48–56 (2017)

    Article  Google Scholar 

  2. Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1(1), 3690 (2016)

    Article  Google Scholar 

  3. Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S., Hirzinger, G.: Soft robotics. IEEE Robot. Autom. Mag. 15(3), 20–30 (2008)

    Article  Google Scholar 

  4. Antman, S.S.: Nonlinear Problems of Elasticity, vol. 107. Springer, New York (2005)

    MATH  Google Scholar 

  5. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)

    Article  Google Scholar 

  6. Renda, F., Giorgio-Serchi, F., Boyer, F., Laschi, C.: Locomotion and elastodynamics model of an underwater shell-like soft robot. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1158–1165. IEEE (2015)

    Google Scholar 

  7. Crisfield, M.A., Remmers, J.J., Verhoosel, C.V., et al.: Nonlinear Finite Element Analysis of Solids and Structures. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  8. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  9. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part ii: computational aspects. Comput. Meth. Appl. Mech. Eng. 58(1), 79–116 (1986)

    Article  Google Scholar 

  10. Simo, J., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions–the plane case: part ii. J. Appl. Mech. 53(4), 855–863 (1986)

    Article  Google Scholar 

  11. Bauchau, O.A., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Sys. Dyn. 37(1), 29–48 (2016)

    Article  MathSciNet  Google Scholar 

  12. Koehler, M., Okamura, A.M., Duriez, C.: Stiffness control of deformable robots using finite element modeling. IEEE Robot. Autom. Lett. 4(2), 469–476 (2019)

    Article  Google Scholar 

  13. Goury, O., Duriez, C.: Fast, generic, and reliable control and simulation of soft robots using model order reduction. IEEE Trans. Robot. 34(6), 1565–1576 (2018)

    Article  Google Scholar 

  14. Grazioso, S., Di Gironimo, G., Siciliano, B.: A geometrically exact model for soft continuum robots: the finite element deformation space formulation. Soft Robot. 6(6), 790–811 (2019)

    Article  Google Scholar 

  15. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation platform v-rep: a versatile 3d robot simulator. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 51–62. Springer (2010)

    Google Scholar 

  16. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2149–2154. IEEE (2004)

    Google Scholar 

  17. Smith, R., et al.: Open dynamics engine (2005)

    Google Scholar 

  18. Coumans, E.: Bullet physics engine. Open Source Software: http://bulletphysics.org 1(3),  84 (2010)

  19. Elsayed, Y., Vincensi, A., Lekakou, C., Geng, T., Saaj, C., Ranzani, T., Cianchetti, M., Menciassi, A.: Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robot. 1(4), 255–262 (2014)

    Article  Google Scholar 

  20. Moseley, P., Florez, J.M., Sonar, H.A., Agarwal, G., Curtin, W., Paik, J.: Modeling, design, and development of soft pneumatic actuators with finite element method. Adv. Eng. Mater. 18(6), 978–988 (2016)

    Article  Google Scholar 

  21. Allard, J., et al.: Sofa-an open source framework for medical simulation (2007)

    Google Scholar 

  22. Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I., et al.: Sofa: a multi-model framework for interactive physical simulation. In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp. 283–321. Springer (2012)

    Google Scholar 

  23. Anderson, P.L., Mahoney, A.W., Webster, R.J.: Continuum reconfigurable parallel robots for surgery: shape sensing and state estimation with uncertainty. IEEE Robot. Autom. Lett. 2(3), 1617–1624 (2017)

    Article  Google Scholar 

  24. Della Santina, C., Katzschmann, R.K., Bicchi, A., Rus, D.: Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. Int. J. Robot. Res., 0278364919897292 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislao Grazioso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grazioso, S., Di Gironimo, G., Rosati, L., Siciliano, B. (2021). Modeling and Simulation of Hybrid Soft Robots Using Finite Element Methods: Brief Overview and Benefits. In: Lenarčič, J., Siciliano, B. (eds) Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-50975-0_41

Download citation

Publish with us

Policies and ethics