Abstract
Mathematical modeling of hybrid soft robots is complicated by the description of the complex shape that they undergone when subject to actuation and external loads. It might be noticed that several approaches have been used so far in robotics, and the problem is not yet fully solved. This short paper aims at presenting an overview of modeling and simulation approaches for soft robots based on finite element methods. Benefits and perspectives of future directions are also discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Della Santina, C., Piazza, C., Gasparri, G.M., Bonilla, M., Catalano, M.G., Grioli, G., Garabini, M., Bicchi, A.: The quest for natural machine motion: an open platform to fast-prototyping articulated soft robots. IEEE Robot. Autom. Mag. 24(1), 48–56 (2017)
Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1(1), 3690 (2016)
Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S., Hirzinger, G.: Soft robotics. IEEE Robot. Autom. Mag. 15(3), 20–30 (2008)
Antman, S.S.: Nonlinear Problems of Elasticity, vol. 107. Springer, New York (2005)
Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)
Renda, F., Giorgio-Serchi, F., Boyer, F., Laschi, C.: Locomotion and elastodynamics model of an underwater shell-like soft robot. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1158–1165. IEEE (2015)
Crisfield, M.A., Remmers, J.J., Verhoosel, C.V., et al.: Nonlinear Finite Element Analysis of Solids and Structures. Wiley, Hoboken (2012)
Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures. Wiley, Hoboken (2013)
Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part ii: computational aspects. Comput. Meth. Appl. Mech. Eng. 58(1), 79–116 (1986)
Simo, J., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions–the plane case: part ii. J. Appl. Mech. 53(4), 855–863 (1986)
Bauchau, O.A., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Sys. Dyn. 37(1), 29–48 (2016)
Koehler, M., Okamura, A.M., Duriez, C.: Stiffness control of deformable robots using finite element modeling. IEEE Robot. Autom. Lett. 4(2), 469–476 (2019)
Goury, O., Duriez, C.: Fast, generic, and reliable control and simulation of soft robots using model order reduction. IEEE Trans. Robot. 34(6), 1565–1576 (2018)
Grazioso, S., Di Gironimo, G., Siciliano, B.: A geometrically exact model for soft continuum robots: the finite element deformation space formulation. Soft Robot. 6(6), 790–811 (2019)
Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation platform v-rep: a versatile 3d robot simulator. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 51–62. Springer (2010)
Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2149–2154. IEEE (2004)
Smith, R., et al.: Open dynamics engine (2005)
Coumans, E.: Bullet physics engine. Open Source Software: http://bulletphysics.org 1(3), 84 (2010)
Elsayed, Y., Vincensi, A., Lekakou, C., Geng, T., Saaj, C., Ranzani, T., Cianchetti, M., Menciassi, A.: Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robot. 1(4), 255–262 (2014)
Moseley, P., Florez, J.M., Sonar, H.A., Agarwal, G., Curtin, W., Paik, J.: Modeling, design, and development of soft pneumatic actuators with finite element method. Adv. Eng. Mater. 18(6), 978–988 (2016)
Allard, J., et al.: Sofa-an open source framework for medical simulation (2007)
Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I., et al.: Sofa: a multi-model framework for interactive physical simulation. In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp. 283–321. Springer (2012)
Anderson, P.L., Mahoney, A.W., Webster, R.J.: Continuum reconfigurable parallel robots for surgery: shape sensing and state estimation with uncertainty. IEEE Robot. Autom. Lett. 2(3), 1617–1624 (2017)
Della Santina, C., Katzschmann, R.K., Bicchi, A., Rus, D.: Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. Int. J. Robot. Res., 0278364919897292 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Grazioso, S., Di Gironimo, G., Rosati, L., Siciliano, B. (2021). Modeling and Simulation of Hybrid Soft Robots Using Finite Element Methods: Brief Overview and Benefits. In: Lenarčič, J., Siciliano, B. (eds) Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-50975-0_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-50975-0_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50974-3
Online ISBN: 978-3-030-50975-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)