Abstract
In this paper, we present a process for collecting and filtering relevant data for epidemiological surveillance of meningitis. We focus on the African meningitis belt stretching from Senegal to Ethiopia. This study aims to fill the data gap for the early detection of epidemics based on the analysis of social media. Our approach is based on previous work that showed that social media analysis contributes significantly to the surveillance of epidemics. It uses IDOMEN (Infectious Disease Ontology for MENingitis) a meningitis domain ontology and a SKOS resource meningVocab (meningitis vocabulary). IDOMEN is an extension of the Infectious Disease Ontology (IDO). The SKOS resource meningVocab is built from a corpus of meningitis tweets from social media. We align the IDOMEN ontology and the SKOS resource meningVocab for collection and filtering tweets containing data relevant to meningitis in a perspective of epidemiological surveillance. Tweets are collected via the Twitter API on the basis of a list of terms related to meningitis. They are then annotated using these two resources and filtered using the rules of the domain (for example, the rules characterizing situations suggestive of bacterial meningitis: fever AND purpura AND headache).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
WHO: Controlling Meningitis Epidemics in Africa: A Quick Reference Guide for Health Authorities and Caregivers, http://www.who.int/csr.
References
Béré, W.R.C., Camara, G., Malo, S., Lo, M., Ouaro, S.: IDOMEN: an extension of infectious disease ontology for MENingitis. Stud. Health Technol. Inform. 264, 313–317 (2019). https://doi.org/10.3233/SHTI190234. http://europepmc.org/abstract/med/31437936
Broniatowski, D.A., Paul, M.J., Dredze, M.: National and local influenza surveillance through Twitter: an analysis of the 2012–2013 influenza epidemic. PLoS ONE 8(12), e83672 (2013). https://doi.org/10.1371/journal.pone.0083672. https://dx.plos.org/10.1371/journal.pone.0083672
Camara, G., Després, S., Djedidi, R., Lo, M.: Vers une ontologie des processus de propagation des maladies infectieuses. In: 23èmes journées francophones d’ingénierie des connaissances, pp. 99–114. IC 2012, June 2012
Culotta, A.: Towards detecting influenza epidemics by analyzing Twitter messages. In: Proceedings of the First Workshop on Social Media Analytics, pp. 115–122. SOMA 2010, Association for Computing Machinery, Washington D.C., District of Columbia, July 2010. https://doi.org/10.1145/1964858.1964874
Cunningham, H., Tablan, V., Roberts, A., Bontcheva, K.: Getting more out of biomedical documents with GATE’s full lifecycle open source text analytics. PLOS Comput. Biol. 9(2), e1002854 (2013). https://doi.org/10.1371/journal.pcbi.1002854. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002854
Dredze, M., Paul, M., Bergsma, S., Tran, H.: Carmen: a twitter geolocation system with applications to public health. In: AAAI Workshop - Technical Report, pp. 20–24, January 2013
Eysenbach, G.: Infodemiology and infoveillance framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the internet. J. Med. Internet Res. 11(1), e11 (2009)
Gomez-Perez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: with examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web. Springer, London (2006). https://doi.org/10.1007/b97353
Liu, S., Young, S.D.: A survey of social media data analysis for physical activity surveillance. J. Forensic Legal Med. 57, 33–36 (2018). https://doi.org/10.1016/j.jflm.2016.10.019. https://linkinghub.elsevier.com/retrieve/pii/S1752928X1630141X
Vilain, P., Menudier, L., Filleul, L.: Twitter: a complementary tool to monitor seasonal influenza epidemic in France? Online J. Public Health Inform. 11(1), e296 (2019). https://doi.org/10.5210/ojphi.v11i1.9724. https://journals.uic.edu/ojs/index.php/ojphi/article/view/9724
Yaka, P., Sultan, B., Broutin, H., Janicot, S., Philippon, S., Fourquet, N.: Relationships between climate and year-to-year variability in meningitis outbreaks: a case study in Burkina Faso and Niger. Int. J. Health Geograph. 7(1), 34 (2008). https://doi.org/10.1186/1476-072X-7-34. http://ij-healthgeographics.biomedcentral.com/articles/10.1186/1476-072X-7-34
Zender, H.O., Olivier, P., Genné, D.: Méningites bactériennes communautaires aiguüs chez l’adulte (2009). https://www.revmed.ch/RMS/2009/RMS-220/Meningites-bacteriennes-communautaires-aigues-chez-l-adulte
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Bere, WP.R.C., Camara, G., Malo, S., Despres, S., Lo, M., Ouaro, S. (2020). Extraction of Relevant Data from Social Media Based on Termino-Ontological Resources: Application to Meningitis Surveillance via Twitter. In: Thorn, J., Gueye, A., Hejnowicz, A. (eds) Innovations and Interdisciplinary Solutions for Underserved Areas. InterSol 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-030-51051-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-51051-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51050-3
Online ISBN: 978-3-030-51051-0
eBook Packages: Computer ScienceComputer Science (R0)