Skip to main content

Extraction of Relevant Data from Social Media Based on Termino-Ontological Resources: Application to Meningitis Surveillance via Twitter

  • Conference paper
  • First Online:
Innovations and Interdisciplinary Solutions for Underserved Areas (InterSol 2020)

Abstract

In this paper, we present a process for collecting and filtering relevant data for epidemiological surveillance of meningitis. We focus on the African meningitis belt stretching from Senegal to Ethiopia. This study aims to fill the data gap for the early detection of epidemics based on the analysis of social media. Our approach is based on previous work that showed that social media analysis contributes significantly to the surveillance of epidemics. It uses IDOMEN (Infectious Disease Ontology for MENingitis) a meningitis domain ontology and a SKOS resource meningVocab (meningitis vocabulary). IDOMEN is an extension of the Infectious Disease Ontology (IDO). The SKOS resource meningVocab is built from a corpus of meningitis tweets from social media. We align the IDOMEN ontology and the SKOS resource meningVocab for collection and filtering tweets containing data relevant to meningitis in a perspective of epidemiological surveillance. Tweets are collected via the Twitter API on the basis of a list of terms related to meningitis. They are then annotated using these two resources and filtered using the rules of the domain (for example, the rules characterizing situations suggestive of bacterial meningitis: fever AND purpura AND headache).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    WHO: Controlling Meningitis Epidemics in Africa: A Quick Reference Guide for Health Authorities and Caregivers, http://www.who.int/csr.

References

  1. Béré, W.R.C., Camara, G., Malo, S., Lo, M., Ouaro, S.: IDOMEN: an extension of infectious disease ontology for MENingitis. Stud. Health Technol. Inform. 264, 313–317 (2019). https://doi.org/10.3233/SHTI190234. http://europepmc.org/abstract/med/31437936

    Article  Google Scholar 

  2. Broniatowski, D.A., Paul, M.J., Dredze, M.: National and local influenza surveillance through Twitter: an analysis of the 2012–2013 influenza epidemic. PLoS ONE 8(12), e83672 (2013). https://doi.org/10.1371/journal.pone.0083672. https://dx.plos.org/10.1371/journal.pone.0083672

    Article  Google Scholar 

  3. Camara, G., Després, S., Djedidi, R., Lo, M.: Vers une ontologie des processus de propagation des maladies infectieuses. In: 23èmes journées francophones d’ingénierie des connaissances, pp. 99–114. IC 2012, June 2012

    Google Scholar 

  4. Culotta, A.: Towards detecting influenza epidemics by analyzing Twitter messages. In: Proceedings of the First Workshop on Social Media Analytics, pp. 115–122. SOMA 2010, Association for Computing Machinery, Washington D.C., District of Columbia, July 2010. https://doi.org/10.1145/1964858.1964874

  5. Cunningham, H., Tablan, V., Roberts, A., Bontcheva, K.: Getting more out of biomedical documents with GATE’s full lifecycle open source text analytics. PLOS Comput. Biol. 9(2), e1002854 (2013). https://doi.org/10.1371/journal.pcbi.1002854. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002854

    Article  Google Scholar 

  6. Dredze, M., Paul, M., Bergsma, S., Tran, H.: Carmen: a twitter geolocation system with applications to public health. In: AAAI Workshop - Technical Report, pp. 20–24, January 2013

    Google Scholar 

  7. Eysenbach, G.: Infodemiology and infoveillance framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the internet. J. Med. Internet Res. 11(1), e11 (2009)

    Article  Google Scholar 

  8. Gomez-Perez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: with examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web. Springer, London (2006). https://doi.org/10.1007/b97353

  9. Liu, S., Young, S.D.: A survey of social media data analysis for physical activity surveillance. J. Forensic Legal Med. 57, 33–36 (2018). https://doi.org/10.1016/j.jflm.2016.10.019. https://linkinghub.elsevier.com/retrieve/pii/S1752928X1630141X

    Article  Google Scholar 

  10. Vilain, P., Menudier, L., Filleul, L.: Twitter: a complementary tool to monitor seasonal influenza epidemic in France? Online J. Public Health Inform. 11(1), e296 (2019). https://doi.org/10.5210/ojphi.v11i1.9724. https://journals.uic.edu/ojs/index.php/ojphi/article/view/9724

    Article  Google Scholar 

  11. Yaka, P., Sultan, B., Broutin, H., Janicot, S., Philippon, S., Fourquet, N.: Relationships between climate and year-to-year variability in meningitis outbreaks: a case study in Burkina Faso and Niger. Int. J. Health Geograph. 7(1), 34 (2008). https://doi.org/10.1186/1476-072X-7-34. http://ij-healthgeographics.biomedcentral.com/articles/10.1186/1476-072X-7-34

    Article  Google Scholar 

  12. Zender, H.O., Olivier, P., Genné, D.: Méningites bactériennes communautaires aiguüs chez l’adulte (2009). https://www.revmed.ch/RMS/2009/RMS-220/Meningites-bacteriennes-communautaires-aigues-chez-l-adulte

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wend-Panga Régis Cédric Bere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bere, WP.R.C., Camara, G., Malo, S., Despres, S., Lo, M., Ouaro, S. (2020). Extraction of Relevant Data from Social Media Based on Termino-Ontological Resources: Application to Meningitis Surveillance via Twitter. In: Thorn, J., Gueye, A., Hejnowicz, A. (eds) Innovations and Interdisciplinary Solutions for Underserved Areas. InterSol 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-030-51051-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51051-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51050-3

  • Online ISBN: 978-3-030-51051-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics