Skip to main content

Research on the Algorithm of Text Data Classification Based on Artificial Intelligence

  • Conference paper
  • First Online:
Multimedia Technology and Enhanced Learning (ICMTEL 2020)

Abstract

In view of the low recall of the traditional network text data classification algorithm, an artificial intelligence based network text data classification algorithm is designed. Before feature extraction, text information is preprocessed first, and word stem is extracted from English. Because there is no inherent space between Chinese words, word segmentation is carried out to complete the preprocessing of network text data. On this basis, an evaluation function is constructed to evaluate each feature item in the input space independently, and to reduce the dimension of the features of the network text data. Finally, the artificial intelligence method is used to classify the network text data, and the most similar training text is found through similarity measurement in the network text data training set. The experimental results show that the designed algorithm based on artificial intelligence has higher recall than the traditional algorithm, and can meet the needs of network text data classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Z., Ji, J.: Classification method of fMRI data based on convolutional neural network. Pattern Recogn. Artif. Intell. 30(6), 549–558 (2017)

    Google Scholar 

  2. Wang, H., Hu, X., Li, P.: Semi-supervised short text stream classification based on vector representation and label propagation. Pattern Recogn. Artif. Intell. 31(7), 634–642 (2018)

    Google Scholar 

  3. Fang, Fang, Wang, Y., Wang, S.: Knowledge acquisition from Chinese records of cyber attacks based on a framework of semantic taxonomy and description. J. Chin. Inf. Process. 33(4), 48–59 (2019)

    Google Scholar 

  4. Fu, P., Lin, Z., Yuan, F., et al.: Convolutional neural network and user information based model for microblog topic tracking. Pattern Recogn. Artif. Intell. 30(1), 77–84 (2017)

    Google Scholar 

  5. Chang, Shen, Junzhong, Ji: Text sentiment classification algorithm based on double channel convolutional neural network. Pattern Recogn. Artif. Intell. 31(2), 158–166 (2018)

    Google Scholar 

  6. Li, Y., Xie, M., Yi, Y.: Fine-grained sentiment analysis for social network platform based on deep-learning model. Appl. Res. Comput. 34(3), 743–747 (2017)

    Google Scholar 

  7. Du, H., Yu, X., Liu, Y.: CNN with part-of-speech and attention mechanism for targeted sentiment classification. Pattern Recogn. Artif. Intell. 31(12), 1120–1126 (2018)

    Google Scholar 

  8. Chen, Q., Zheng, S., Chen, H.: Research on automatic detection of bad vocabulary in online media based on AlphaGo algorithm]. Comput. Dig. Eng. 46(8), 1589–1592 (2018)

    Google Scholar 

  9. Huang, B., Liu, Q., He, Q., et al.: Towards automatic smart-contract codes classification by means of word embedding model and transaction information. Acta Automatica Sinica 43(9), 1532–1543 (2017)

    Google Scholar 

  10. Liu, S., Cheng, X., Fu, W., et al.: Numeric characteristics of generalized M-set with its asymptote. Appl. Math. Comput. 243, 767–774 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, Yj., Ma, L. (2020). Research on the Algorithm of Text Data Classification Based on Artificial Intelligence. In: Zhang, YD., Wang, SH., Liu, S. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-030-51103-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51103-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51102-9

  • Online ISBN: 978-3-030-51103-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics