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Abstract. We continue the study of computable embeddings for pairs of
structures, i.e. for classes containing precisely two non-isomorphic struc-
tures. Surprisingly, even for some pairs of simple linear orders, com-
putable embeddings induce a non-trivial degree structure. Our main
result shows that although {ω · 2, ω� · 2} is computably embeddable in
{ω2, (ω2)

�}, the class {ω · k, ω� · k} is not computably embeddable in
{ω2, (ω2)

�} for any natural number k ≥ 3.
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1 Introduction

The paper studies computability-theoretic complexity for classes of countable
structures. A standard method of investigating this problem is to fix a particular
notion of reduction ≤r between classes, and then to gauge the complexity of
classes via the degrees induced by ≤r.

One of the first examples of such reductions comes from descriptive set the-
ory: Friedman and Stanley [9] introduced the notion of Borel embedding. Infor-
mally speaking, a Borel embedding Φ from a class K into a class K′ is a Borel
measurable function, which acts as follows. Given the atomic diagram of an
arbitrary structure A ∈ K as an input, Φ outputs the atomic diagram of some
structure Φ(A) belonging to K′. The key property of Φ is that Φ is injective on
isomorphism types, i.e. A ∼= B if and only if Φ(A) ∼= Φ(B).

Calvert, Cummins, Knight, and Miller [4] (see also [15]) developed two dif-
ferent effective versions of Borel embeddings. Roughly speaking, a Turing com-
putable embedding (or tc-embedding, for short) is a Borel embedding, which is
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realized by a Turing functional Φ. A computable embedding is realized by an
enumeration operator. It turned out that one of these notions is strictly stronger
than the other: If there is a computable embedding from K into K′, then there
is also a tc-embedding from K into K′. The converse is not true, see Sect. 2 for
formal details.

A powerful tool, which helps to work with Turing computable embeddings,
is provided by the Pullback Theorem of Knight, Miller, and Vanden Boom [15].
Informally, this theorem says that tc-embeddings behave well, when working
with syntactic properties: one can “pull back” computable infinitary sentences
from the output class K′ to the input class K, while preserving the complexity
of these sentences.

Nevertheless, Pullback Theorem and its consequences show that sometimes
tc-embeddings are too coarse: they cannot see finer structural distinctions
between classes. One of the first examples of this phenomenon was provided
by Chisholm, Knight, and Miller [5]: Let V S be the class of infinite Q-vector
spaces, and let ZS be the class of models of the theory Th(Z, S), where (Z, S)
is the integers with successor. Then V S and ZS are equivalent with respect to
tc-embeddings, but there is no computable embedding from V S to ZS.

Another example of this intriguing phenomenon can be found in the simpler
setting of classes generated by pairs of linear orderings, closed under isomor-
phism. Recall that by ω one usually denotes the standard ordering of natural
numbers. For a linear order L, by L� we denote the reverse ordering, i.e. a ≤L� b
iff b ≤L a.

Ganchev, Kalimullin and Vatev [10] gave one such example. For a structure
A, let Ã be the enrichment of A with a congruence relation ∼ such that every
congruence class in Ã is infinite and Ã/∼ ∼= A. Then they showed that the
class {ωS , ω�

S} is tc-equivalent to the class {ω̃S , ω̃�
S}, whereas {ω̃S , ω̃�

S} is not
computably embeddable into {ωS , ω�

S}. Here ωS and ω�
S are linear orderings of

type ω and ω�, respectively, together with the successor relation.
One can prove (see, e.g., Theorem 3.1 in [3]) the following: Let L be a com-

putable infinite linear order with a least, but no greatest element. Then the
pair {L,L�} is equivalent to {ω, ω�} with respect to tc-embeddings. This result
gives further evidence that, in a sense, tc-embeddings cannot work with finer
algebraic properties: Here a tc-embedding Φ can only employ the existence (or
non-existence) of the least and the greatest elements. If one considers, say, the
pair {ωω, (ωω)�}, then our Φ is not able to “catch” limit points, limits of limit
points, etc. Section 2.1 gives a further discussion of interesting peculiarities of
the pair {ω, ω�}.

On the other hand, when one deals with computable embeddings, even finite
sums of ω (together with their reverse orders) already exhibit a quite complicated
structure: Let k and � be non-zero natural numbers. Then there is a computable
embedding from {ω · k, ω� · k} into {ω · �, ω� · �} if and only if k divides �
(Theorem 5.2 of [3]). In other words, in this particular setting the only possible
computable embeddings are the simplest ones—by appending a fixed number of
copies of an input order together. We note that it is quite non-trivial to prove
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that all other embeddings Ψ (e.g., a computable embedding from {ω ·3, ω� ·3} to
{ω ·4, ω� ·4}) are not possible—our proofs fully employ the peculiarities inherent
to enumeration operators. These peculiarities have topological nature: indeed,
one can establish the lack of continuous operators Ψ (in the Scott topology).

The current paper continues the investigations of [3]. We show that even
adding the finite sums of ω2 (and their inverses) to the mix makes the resulting
picture more combinatorially involved (compare with Theorem 5.2 mentioned
above).

2 Preliminaries

We will slightly abuse the notations: both the set of natural numbers and the
standard ordering of this set will be denoted by ω. The precise meaning of the
symbol ω will be clear from the context. We consider only computable languages,
and structures with domain contained in ω. We assume that any considered
class of structures K is closed under isomorphism, modulo the restriction on
domains. For a structure S, D(S) denotes the atomic diagram of S. We will
often identify a structure and its atomic diagram. We refer to atomic formulas
and their negations as basic.

Let K0 be a class of L0-structures, and K1 be a class of L1-structures. In the
definition below, we use the following convention: An enumeration operator Γ
is treated as a computably enumerable set of pairs (α,ϕ), where α is a finite set
of basic (L0 ∪ ω)-sentences, and ϕ is a basic (L1 ∪ ω)-sentence. As usual, for a
set X, we have Γ (X) = {ϕ : (α,ϕ) ∈ Γ, α ⊆ X}.

Definition 1 ([4,15]). An enumeration operator Γ is a computable embedding
of K0 into K1, denoted by Γ : K0 ≤c K1, if Γ satisfies the following:

1. For any A ∈ K0, Γ (A) is the atomic diagram of a structure from K1.
2. For any A,B ∈ K0, we have A ∼= B if and only if Γ (A) ∼= Γ (B).

Any computable embedding has an important property of monotonicity : If
Γ : K0 ≤c K1 and A ⊆ B are structures from K0, then we have Γ (A) ⊆ Γ (B) [4,
Proposition 1.1].

Definition 2 ([4,15]). A Turing operator Φ = ϕe is a Turing computable
embedding of K0 into K1, denoted by Φ : K0 ≤tc K1, if Φ satisfies the following:

1. For any A ∈ K0, the function ϕ
D(A)
e is the characteristic function of the

atomic diagram of a structure from K1. This structure is denoted by Φ(A).
2. For any A,B ∈ K0, we have A ∼= B if and only if Φ(A) ∼= Φ(B).

Proposition (Greenberg and, independently, Kalimullin; see [14,15]).
If K0 ≤c K1, then K0 ≤tc K1. The converse is not true.

Both relations ≤c and ≤tc are preorders. If K0 ≤tc K1 and K1 ≤tc K0, then
we say that K0 and K1 are tc-equivalent, denoted by K0 ≡tc K1. For a class K,
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by degtc(K) we denote the family of all classes which are tc-equivalent to K.
Similar notations can be introduced for the c-reducibility.

We note that except the reductions ≤c and ≤tc, there are many other
approaches to comparing computability-theoretic complexity of classes of struc-
tures. These approaches include: transferring degree spectra and other algo-
rithmic properties [13], Σ-reducibility [8,17], computable functors [11,16], Borel
functors [12], primitive recursive functors [1,7], etc.

For two ω-chains x = (xi)
∞
i=0 and y = (yj)

∞
j=0, analogous to the relation ⊆�

between sets, let us denote by x <� y the following infinitary sentence
∨

q∈ω

∧

i,j>q

xi < yj .

The following proposition is essential for our results. It is a slight reformula-
tion of Proposition 5.7 from [3].

Proposition 1. Suppose {ω ·2, ω� ·2} ≤c {C,D} via Γ , where C is a linear order
without infinite descending chains and D is an infinite order without infinite
ascending chains. Let A and B be copies of ω with mutually disjoint domains.
Then for any ω-chains (xi)

∞
i=0 and (yi)

∞
i=0 such that Γ (A) |= ∧

i∈ω xi < xi+1

and Γ (B) |= ∧
i∈ω yi < yi+1 such that

Γ (A + B) |= x <� y ∨ y <� x.

2.1 Further Background

This paper is focused on the degree degtc({ω, ω�}). Historically speaking, the
choice of this particular degree was motivated by the following open question:

Problem (Kalimullin). It is easy to show that the pairs {ω, ω�} and {ω̃, ω̃�}
are tc-equivalent. Moreover, {ω, ω�} ≤c {ω̃, ω̃�}. Is there a computable embed-
ding from {ω̃, ω̃�} to {ω, ω�}?

This problem was a starting point of investigations of [3] and the current
paper. One can attack the problem via employing model-theoretic properties of
the structures (in a way similar to [5]). In particular, a naive way to distinguish
these pairs would be the following. Each of the orders ω and ω� is rigid, while
both ω̃ and ω̃� have continuum many automorphisms. Maybe, this fact can help
us to prove that {ω̃, ω̃�} �c {ω, ω�}? Nevertheless, this is not the case—one
can show that {ω̃, ω̃�} ≡c {(ω2, B), (ω · ω�, B)}, where B is the standard block
relation on a linear order. Since the structures (ω2, B) and (ω · ω�, B) are both
rigid, it seems that studying automorphism groups does not help in this setting.

We note that quite unexpectedly (at least for us), the theory of Tur-
ing computable embeddings found applications in algorithmic learning theory.
Section 3.2 of [2] establishes connections between tc-embeddings and a particular
paradigm of learnability for classes of countable structures. Informally speaking,
this paradigm employs a learner whose goal is, given the atomic diagram of a
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structure A, to learn the isomorphism type of A. The learner is allowed to use
both positive and negative data provided by the atomic diagram. Remarkably,
the family {ω, ω�} is learnable by a computable learner. We conjecture that our
results can be also connected to learnability, specifically to its topological aspects
(see, e.g., [6]). The reader is referred to [3] for more results on degtc({ω, ω�}).

3 Positive Results

Let A be a linear ordering and let us have, for all a ∈ A, the linear orderings Ba

with mutually disjoint domains. Following Rosenstein [18], we define the general-
ized sum C =

∑
a∈A Ba as the linear ordering such that dom(C) =

⋃
a∈A dom(Ba)

and for any x, y ∈ C, we define x <C y iff x, y ∈ Ba for some a ∈ A and x <Ba
y,

or x ∈ Ba, y ∈ Ba′ and a <A a′.

Theorem 1. For any natural number n ≥ 1,

{ω · n, ω� · n} ≤c {ω2 · n, (ω2)
� · n}.

Proof. The same enumeration operator Γ works for all n ≥ 1. For a linear
ordering L and a ∈ L, let La be the linear ordering consisting of pairs (a, b),
where b ∈ L, and ordered by the second component as in L. Informally, for each
element a in the input linear order L, the enumeration operator outputs La.
Moreover, all pairs in Γ (L) are ordered lexicographically by the order induced
by L. In other words, Γ (L) =

∑
a∈L La.

– If L ∼= ω · n, then Γ (L) ∼= ∑
j∈n

∑
i∈ω ω · n =

∑
j∈n ω2 = ω2 · n.

– If L ∼= ω� · n, then Γ (L) ∼= ∑
j∈n

∑
i∈ω� ω� · n =

∑
j∈n (ω2)� = (ω2)� · n.


�
For the next result, we need the following notation. For a linear ordering L

and an element a in L, we define

leftL(a) = |{b ∈ dom(L) | b ≤L a}|
rightL(a) = |{b ∈ dom(L) | b ≥L a}|

radL(a) = min{leftL(a), rightL(a)}.

Informally, we will show that there exists an enumeration operator Γ which can
“guess” whether an element a in the input linear ordering L has finite or infinite
radius, denoted radL(a).

Theorem 2. {ω · 2, ω� · 2} ≤c {ω2, (ω2)�}.
Proof. We informally describe the work of the enumeration operator Γ . Suppose
we have as input the finite linear ordering L = a0 < a1 < a2 < · · · < an. For
each ai in L, Γ outputs the pairs of the form (ai, aj), where aj ≤N radL(ai),
where ≤N is the standard ordering of natural numbers. All pairs in the output
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structure are ordered in lexicographic order. This concludes the description of
how Γ operates. Now we have two cases to consider for the input structure A.

Suppose that A = A1 +A2, where A1 and A2 are copies of ω. If a ∈ A1 is its
k-th least element, then radA(a) = k and hence a contributes at most k pairs to
Γ (A). If a ∈ A2, then clearly radA(a) = ℵ0 and hence a contributes infinitely
many pairs to Γ (A), forming a linear ordering of type ω · 2.

We conclude that in this case

Γ (A) ∼=
∑

i∈ω

i +
∑

i∈ω

ω · 2 ∼= ω + ω2 = ω2.

Suppose that A = A1 +A2, where A1 and A2 are copies of ω�. If a ∈ A1, then a
contributes infinitely many elements of type ω� · 2 in Γ (A). If a ∈ A2 is its k-th
greatest element, then a contributes at most k pairs in Γ (A). We conclude that
in this case

Γ (A) ∼=
∑

i∈ω�

ω� · 2 +
∑

i∈ω�

i ∼= (ω2)
�

+ ω� = (ω2)
�
.


�
Corollary 1. For any natural number n ≥ 1,

{ω · (n + 1), ω� · (n + 1)} ≤c {ω2 · n, (ω2)
� · n}.

Proof. We use the same enumeration operator Γ as in Theorem 2. Suppose
A = A0 + A1 + · · · + An, where each Ai is a copy of ω. Then if a ∈ A0 is
the k-th least element, then a contributes at most k pairs in Γ (A). If a ∈ Ai,
where i > 0, then a contributes infinitely many pairs of the type of A to Γ (A).
It follows that

Γ (A) ∼=
∑

i∈ω

i +
∑

i∈ω

ω · (n + 1) + · · · +
∑

i∈ω

ω · (n + 1)

︸ ︷︷ ︸
n

= ω + ω2 · n = ω2 · n.

Suppose A = A0+A1+· · ·+An, where each Ai is a copy of ω�. Then if a ∈ An is
the k-th greatest element, then a contributes at most k pairs in Γ (A). If a ∈ Ai,
where 0 ≤ i < n, then a contributes infinitely many pairs of the type of A to
Γ (A). It follows that

Γ (A) ∼=
∑

i∈ω�

ω� · (n + 1) + · · · +
∑

i∈ω�

ω� · (n + 1)

︸ ︷︷ ︸
n

+
∑

i∈ω�

i

= (ω2)
� · n + ω� = (ω2)

� · n.


�
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Corollary 2. For any natural number n ≥ 1,

{ω · 2, ω� · 2} ≤c {ω2 · n, (ω2)
� · n}.

Proof. This is straightforward. Let Γ be the enumeration operator from Theo-
rem 2. Then for a natural number n ≥ 1, the embedding will be obtained by the
enumeration operator, which, for linear ordering A, simply copies n number of
times the linear ordering Γ (A). 
�

4 The Case {ω · 3, ω� · 3} �≤c {ω2, (ω2)
�}

In this section, towards a contradiction, assume Γ : {ω ·3, ω� ·3} ≤c {ω2, (ω2)�}.
Let B be a copy of ω · 3 (or the reverse ordinal). In general, for a subordering
A of B, we may have that Γ (A) is not a linear ordering. For example, we may
have x, y ∈ Γ (A), but none of the sentences x < y or y < x are in Γ (A).
Suppose Γ (B) |= x < y. Then we claim that there is no extension C of A
such that Γ (C) |= y < x. In other words, although Γ (A) does not “know”
the relation between x and y, this relation is already fixed. Assume there is
such an extension C for which Γ (C) |= y < x. By compactness of enumeration
operators, we may suppose that C extends A by only finitely many elements.
We can find another finite extension D of A with dom(D) ∩ dom(B) = dom(A)
and dom(D) ∩ dom(C) = dom(A) such that Γ (D) |= x < y ∨ y < x. Now we use
monotonicity. If Γ (D) |= x < y, then we must have Γ (C ∪ D) |= x < y & y < x.
If Γ (D) |= y < x, then we must have Γ (B ∪ D) |= x < y & y < x. In both cases
we reach a contradiction.

Remark 1. It is safe to always suppose that if A is a linear ordering (or its
corresponding reverse linear ordering), then Γ (A) is also a linear ordering.

Let us denote by a <∞ b the computable infinitary sentence saying that there
are infinitely many elements between a and b.

Proposition 2. For any infinite and coinfinite set A, if there is a copy A of
ω with dom(A) = A such that Γ (A) ∼= ω2, then there is no copy B of ω with
dom(B) ⊆ N \ A such that Γ (B) ∼= ω2.

Proof. Assume that there are at least two copies A and B of ω, with mutually
disjoint domains, such that Γ (A) ∼= ω2 and Γ (B) ∼= ω2. Then we can fix the
infinite sequences a = (ai)

∞
i=0 and b = (bi)

∞
i=0 such that

Γ (A) |= a0 <∞ a1 <∞ a2 <∞ · · ·
Γ (B) |= b0 <∞ b1 <∞ b2 <∞ · · ·

Then by Proposition 1, we have Γ (A + B) |= a <� b ∨ b <� a. It follows
that Γ (A + B) extends a copy of ω2 · 2, which is a contradiction because by
monotonicity of enumeration operators this would mean that there is a copy C
of ω · 3 extending A + B such that Γ (C) extends ω2 · 2. 
�
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From now on, in this section, we suppose that we work with copies A of ω
such that Γ (A) has type strictly less than ω2, i.e. there exist natural numbers
n and � such that Γ (A) ∼= ω · n + �.

Proposition 3. There exists an infinite subset D of natural numbers and a
number n such that any copy A of ω with dom(A) ⊆ D is such that Γ (A) has
type at most ω · n.

Proof. Towards a contradiction, assume that for any infinite subset D of natural
numbers, for any n, there exists a copy A of ω with dom(A) ⊆ D such that
Γ (A) is at least ω · n. This means that we can consider a sequence An of copies
of ω, with mutually disjoint domains, such that Γ (An) has type at least ω · n.
Now we can partition each copy An into an infinite sum of finite parts (αn,i)

∞
i=0

such that An =
∑

i∈ω αn,i. Then we can form a new copy B of ω in the following
way: B =

∑
i∈ω

∑i
n=0 αn,i−n. In other words, B = α0,0 + α0,1 + α1,0 + α0,2 +

α1,1 +α2,0 +α0,3 + · · · Then B contains An for all n and by monotonicity, Γ (B)
has type greater than ω · n for all n. We conclude that Γ (B) has type at least
ω2, which is a contradiction. 
�
Remark 2. Proposition 3 allows us to proceed as in Section 7 of [3] and suppose
that we have fixed an infinite set D and a number n such that any copy A of ω
with dom(A) ⊆ D is such that Γ (A) ∼= ω · n. From here on, all copies of ω that
we consider will have as domains coinfinite subsets of D.

Proposition 4. Let A and B be two such copies of ω, with mutually disjoint
domains, such that for the ω-chains ai = (ai,j)

∞
j=0 and bi = (bi,j)

∞
j=0, where i =

1, . . . , n, we have Γ (A) |= a1 < a2 < · · · < an and Γ (B) |= b1 < b2 < · · · < bn.
Then

Γ (A + B) |= an <� bn.

Proof. Assume not. By Proposition 1 we would have Γ (A + B) |= bn <� an. Let
an,0 ∈ Γ (α) for some finite part α of A. Then C = α + B is a copy of ω such
that Γ (C) |= b1 < b2 < · · · < bn < an,0. It follows that Γ (C) extends a copy of
ω · n + 1, which is a contradiction with Remark 2. 
�
Proposition 5. Let A, B, and C be copies of ω. Suppose that

Γ (C) |= c1 < c2 < · · · < cn,

where ci = (ci,j)
∞
j=0 are ω-chains. Then there exists an infinite subsequence

(is)
∞
s=0 such that

Γ (A + B + C) |=
∧

s∈ω

cn,is
<∞ cn,is+1 .

Proof. Assume not. Then Γ (A + B + C) |= c1 < · · · < cn + D, where D has the
type of ω2. Let d ∈ D be such that d ∈ Γ (α + β + C), where α and β are finite
parts of A and B respectively. Then α + β + C is a copy of ω, but Γ (α + β + C)
extends a copy of ω · n + 1, which is a contradiction with Remark 2. 
�
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Proposition 6. For any linear ordering L of type ω ·3, there is a linear ordering
M of type ω · 2 with dom(L) = dom(M) and Γ (M) ∼= ω2.

Proof. Let L = A +B + C, where A, B, and C are copies of ω. By Proposition 5,
consider the infinite sequence c ∈ Γ (C) such that

Γ (A + B + C) |=
∧

i∈ω

ci <∞ ci+1.

Assume that for some finite parts α and β of A and B respectively, for some i,
Γ (α+β +C) |= ci <∞ ci+1. But since α+β +C is a copy of ω, and Γ (C) ∼= ω ·n,
then Γ (α + β + C) would extend a copy of ω · (n + 1), which is a contradiction
with Remark 2. It follows that any such finite parts α and β contribute finitely
many elements to any interval of the form (ci, ci+1).

Let ui = (ui,j)
∞
j=0 be ω-chains such that we can partition A and B into finite

parts such that A =
∑

i∈ω αi and B =
∑

i∈ω βi and for all i,

Γ (αi + βi + C) |=
i∧

j=0

cj < uj,i−j < cj+1.

Then, by monotonicity, we obtain the following:

Γ (
∑

i∈ω

(αi + βi) + C) |=
∧

i∈ω

∧

j∈ω

ci < ui,j < ci+1.

It follows that M =
∑

i∈ω(αi +βi)+C is a copy of ω ·2 with dom(M) = dom(L)
which produces a copy of ω2. 
�
Proposition 7. Let L and M be disjoint copies of ω · 2 such that Γ (L) ∼= ω2

and Γ (M) ∼= ω2. Then there is a copy N of ω ·3 such that Γ (N ) extends a copy
of ω2 · 2.

Proof. Let L = A+B and M = C +D, where A, B, C and D are copies of ω. Let
us fix the ω-chains bi = (bi,j)

∞
j=0 and di = (di,j)

∞
j=0 where i = 1, . . . , n such that

Γ (B) |= b1 < b2 < · · · < bn and Γ (D) |= d1 < d2 < · · · < dn. By Proposition 5,
we can suppose that the ω-chains bn and dn are such that

Γ (A + B) |=
∧

i∈ω

bn,i <∞ bn,i+1 (1)

Γ (C + D) |=
∧

i∈ω

dn,i <∞ dn,i+1, . (2)

Now by Proposition 4 we have that

Γ (B + D) |= bn <� dn. (3)

For an arbitrary partition of B and C into finite parts such that B =
∑

i∈ω βi

and C =
∑

i∈ω γi, let us consider the copy N of ω · 3, where

N = A +
∑

i∈ω

(βi + γi) + D.
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By monotonicity, (3) implies that Γ (N ) |= bn <� dn. Now, again by monotonic-
ity, (1) and (2) imply that Γ (N ) extends a copy of ω2 · 2. 
�

Now we are ready to finish the proof. Consider two disjoint copies L and M
of ω · 3 such that Γ (L) ∼= ω2 and Γ (M) ∼= ω2. By Proposition 6, we obtain two
disjoint copies L1 and M1 of ω ·2 such that Γ (L1) ∼= ω2 and Γ (M1) ∼= ω2. Then
by Proposition 7, from L1 and M1 we can construct a copy N of ω · 3 such that
Γ (N ) �∼= ω2. Thus, we have proven the following theorem.

Theorem 3. {ω · 3, ω� · 3} �≤c {ω2, (ω2)�}.
Corollary 3. For any non-zero natural number n,

n ≥ 2 ⇐⇒ {ω · 3, ω� · 3} ≤c {ω2 · n, (ω2)
� · n}.

Proof. First consider the direction (⇒). For each n ≥ 2 we will show how to build
an enumeration operator Γn. Notice that by Corollary 1 we have an enumeration
operator Γ2 : {ω · 3, ω� · 3} ≤c {ω2 · 2, (ω�)2 · 2}. Moreover, by Theorem 1, we
have an enumeration operator Γ3 : {ω · 3, ω� · 3} ≤c {ω2 · 3, (ω�)2 · 3}.

Let n = 2k for some k ≥ 1. Then Γn works so that, for any input A, it
outputs k disjoint copies of Γ2(A).

Let n = 2k + 3 for some k ≥ 0. Then Γn works so that, for any input A, it
outputs k disjoint copies of Γ2(A) together with a copy of Γ3(A). The direction
(⇐) is exactly Theorem 3. 
�

5 The General Case

Here, using the same techniques as in Sect. 4, we will obtain the following theo-
rem.

Theorem 4. For any k ≥ 3, {ω · k, ω� · k} �≤c {ω2, (ω2)�}.
Again towards a contradiction, assume that we have fixed a number k ≥ 3

and an enumeration operator Γ : {ω·k, ω�·k} ≤c {ω2, (ω2)�}. Since Proposition 2
and Proposition 3 still apply in this more general case, we can use Remark 2
and suppose we have fixed a number n such that we always work with copies A
of ω such that Γ (A) ∼= ω ·n. By essentially repeating the proof of Proposition 5,
we obtain the following proposition.

Proposition 8. Let A1,A2, . . . ,Ak be copies of ω. Suppose that

Γ (Ak) |= c1 < c2 < · · · < cn,

where ci = (ci,j)
∞
j=0 are ω-chains. Then there exists an infinite subsequence

(is)
∞
s=0 such that

Γ (
k∑

j=1

Aj) |=
∧

s∈ω

cn,is
<∞ cn,is+1 .
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The next proposition is a generalization of Proposition 6.

Proposition 9. For any linear ordering L of type ω ·k, there is a linear ordering
M of type ω · 2 with dom(L) = dom(M) and Γ (M) ∼= ω2.

Proof. Let L =
∑k

i=1 Ai, where Ai are copies of ω. By Proposition 8, consider
the ω-chain (ci)

∞
i=0 in Γ (Ak) such that Γ (

∑k
j=1 Aj) |= ∧

i∈ω ci <∞ ci+1.
As in the proof of Proposition 6, for any �, let u� = (u�,j)

∞
j=0 be an ω-chain

such that we can partition Ai into finite parts with Ai =
∑

j∈ω αi,j , where
i = 1, 2, . . . , k − 1, where for all j,

Γ (
k−1∑

i=1

αi,j + Ak) |=
j∧

�=0

c� < u�,j−� < c�+1.

Then, by monotonicity, we obtain the following:

Γ (
∑

j∈ω

k−1∑

i=1

αi,j + Ak) |=
∧

�∈ω

∧

j∈ω

c� < u�,j < c�+1.

It follows that M =
∑

j∈ω

∑k−1
i=1 αi,j + Ak is a copy of ω · 2 with dom(M) =

dom(L) which produces a copy of ω2. 
�
Let us take two disjoint copies L and M of ω · k such that Γ (L) ∼= ω2 and

Γ (M) ∼= ω2. By Proposition 9, we obtain two disjoint copies L1 and M1 of ω · 2
such that Γ (L1) ∼= ω2 and Γ (M1) ∼= ω2. Then by Proposition 7, from L1 and
M1 we can construct a copy N of ω · 3 such that Γ (N ) extends a copy of ω2 · 2.
By monotonicity, any copy N̂ of ω ·k extending N will be such that Γ (N̂ ) �∼= ω2.
We conclude that {ω · k, ω� · k} �≤c {ω2, (ω2)�}.

6 Positive Results for Powers of ω

Proposition 10. For any n ≥ 1, {ωn, (ωn)�} ≤c {ω2n, (ω2n)�}.
Proof. Standard cartesian product construction as in [18, Definition 1.40]. 
�
Theorem 5. {ω2, (ω2)�} ≤c {ω3, (ω3)�}.
Proof. The idea here is to replace each point by an interval of the form [a, b],
which means that this interval will have type ω ·k+� in the first case and �+ω� ·k
in the second case.

We informally describe the work of the enumeration operator Γ . Let us con-
sider some finite diagram δ(a) of the input structure A. For each a in δ(a), Γ
executes the following steps: Find elements b and c such that b ≤A a ≤A c, where
b, c ≤N a, such that b is the ≤A-least such element and c is the ≤A-greatest such
element in δ(a). For all elements d in δ(a) such that b ≤A d ≤A c, Γ enumerates
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in the output structure the pair (a, d). All pairs are ordered lexicographically.
This concludes the description of Γ . Now we have two cases to consider.

Suppose that A =
∑

i∈ω Ai, where Ai are copies of ω. It is easy to see that
for each i, there are only finitely many elements in Ai, which contribute finitely
many pairs in Γ (A). For instance, let a be the <N-least element in A \ A0. It
follows that in A0 only the elements which are <N-less than a contribute finitely
many pairs in Γ (A). We have

Γ (A) =
∑

a∈A0

(ω · ka,0 + �a,0) + · · · +
∑

a∈Ai

(ω · ka,i + �a,i) + · · ·

= ω2 + · · · + ω2 + · · · = ω3.

For the second case, suppose that A =
∑

i∈ω� Ai, where Ai are copies of ω�.
Again, for each i, there are only finitely many elements in Ai, which contribute
finitely many pairs in Γ (A). It follows that

Γ (A) = · · · +
∑

a∈Ai

(�a,i + ω� · ka,i) + · · · +
∑

a∈A0

(�a,0 + ω� · ka,0)

= · · · + (ω2)
�

+ · · · + (ω2)
�

= (ω3)
�
.


�
Using the same enumeration operator Γ as in Theorem 5, we obtain the

following corollary.

Corollary 4. For any n ≥ 1, {ωn, (ωn)�} ≤c {ω2n−1, (ω2n−1)�}.
Corollary 5. For any n ≥ 2, {ω2, (ω2)�} ≤c {ωn, (ωn)�}.
Proof. For any natural number n ≥ 2, we briefly describe the enumeration oper-
ator Γn : {ω2, (ω2)�} ≤c {ωn, (ωn)�}.

– If n = 2k, where k ≥ 1, then for any input A, Γn outputs Ak.
– If n = 3, then Γ3 is the enumeration operator from Theorem 5.
– If n = 2k + 3, where k ≥ 1, then for any input A, Γn outputs Γ3(A) · Ak.


�

7 Future Work

We strongly conjecture that by employing the methods of this paper, one can
prove that {ω · 3, ω� · 3} �c {ω3, (ω3)�}. Furthermore, it would be interesting to
consider pairs of structures {A,B} such that A and B are not linear orders, but
still {A,B} ≡tc {ω, ω�}. We note that in this case, A and B cannot be Boolean
algebras (see Proposition 4.6 of [2]).
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