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Abstract. Lukasiewicz logic is an established formal system of many-
valued logic. Decision problems in both propositional and first-order case
have been classified as to their computational complexity or degrees of
undecidability; for the propositional fragment, theoremhood and prov-
ability from finite theories are coNP complete. This paper extends the
range of results by looking at validity degree in propositional Lukasiewicz
logic, a natural optimization problem to find the minimal value of a term
under a finite theory in a fixed complete semantics interpreting the logic.
A classification for this problem is provided using the oracle class FPNF |
where it is shown complete under metric reductions.

1 Introduction

Lukasiewicz logic originated in the 1920s as a semantically motivated formal sys-
tem for many-valued logic. This paper works with the infinite-valued Lukasiewicz
logic L, introduced by Lukasiewicz and Tarski [20]. As with some other non-
classical systems, such as intuitionistic logic, the syntax is similar to classical
logic, while the valid inferences form a strict subset of those of classical logic.
Validity /provability degrees as a concept in Lukasiewicz logic stem from a
research line proposed by Goguen [11]. The paper set the challenge to develop
a formal approach allowing to derive partly true conclusions from partly true
assumptions. In [26] the task was taken up by Pavelka, who offered a compre-
hensive formalism based on complete residuated lattices, using essentially dia-
grams of arbitrary but fixed residuated lattices to capture provability degrees in
the syntax. Pavelka used graded terms' and his formal system incorporated rules
that explicitly use the algebra on degrees/grades alongside syntactic derivations.
For example, a graded modus ponens reads {(r,¢), (s, — ¥)}/{r ® s,1) with
r and s truth constants, ¢ and ¢ terms, and ® the monoidal operation of the
residuated lattice. Pavelka’s approach was later simplified by Héjek [12], who
proposed an expansion of Lukasiewicz infinite-valued logic with constants for
rational elements of [0,1], and rendered each graded term (r, ) as the impli-
cation 7 — . This was an elegant example of embedding the graded syntax

! We use term and (propositional) formula interchangeably in this paper.
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approach in what turns out to be a conservative expansion of Lukasiewicz logic.
The resulting logic was named Rational Pavelka logic (RPL); see [12, 14,4, 7].

Assume truth values range in a complete lattice. The wvalidity degree of a
term ¢ under a theory T is the infimum of values ¢ can get under assignments
that make T true. No constants are needed to define this notion. Still, the con-
stants provide a canonical way of introducing provability degrees, the syntactic
counterpart; thus we look at the language of RPL next to that of L.

Both L and RPL have an equivalent algebraic semantics (in the sense of
[5]). In particular, L corresponds to the variety of MV-algebras; [6,9,24] and the
references therein provide resources for their well-developed theory. MV-algebras
are strongly linked to Abelian ¢-groups ([22]); this is manifest in the choice of
algebraic language, and we follow MV-algebraists and use the language @ and
— as a reference language for our complexity results. This is also a matter of
convenience since some previous results are framed in this language.

We shall use the real-valued (standard) MV-semantics, with the unit interval
as the domain and piecewise linear functions as interpretations of the function
symbols; one can prove strong completeness for finite theories over L w.r.t. this
algebra. The algebra has been useful for obtaining complexity results for L, since
Mundici’s pioneering NP completeness result on its SAT problem [23], which
also gives coNP completeness for theoremhood in L. Other complexity results
for propositional logic L include [1,2] reducing the decision problems in L to the
setting of finite MV-chains, [17,18] dealing with admissible rules, [25], [3], or [8].
All these works target decision problems.

The validity degree task (to determine the validity degree of a term ¢ under
a finite theory T') is a natural optimization problem induced by the many-valued
setting and the purpose of this paper is to see where it sits among other optimiza-
tion problems. Using tools of complexity theory, we classify the validity degree
task in propositional Lukasiewicz logic L. and its extension RPL, for instances
that pair a finite theory T with a term ¢. Our emphasis is on L rather than
RPL: it is far better known, and the existing algebraic methods for L. provide us
with tools. In fact, the few complexity results available for RPL rely on reduc-
tions to L. In [12] H4jek proved that for finite theories in RPL, validity degrees
are rational; his method inspires ours in eliminating the constants, relying on
their implicit definability in L. Héjek also provided complexity classification for
the decision version of the problem in [13], showing that provability from finite
theories in propositional RPL is coNP complete, using mixed integer program-
ming. In [15], the same result is obtained from analogous results for L, using the
implicit definability of constants directly.

We fill the gap of a basic classification for the optimization problem. Our
upper bounds are based on improving H&jek’s rationality proof for validity
degrees with establishing an explicit polynomial bound on denominator size,
relying on Aguzzoli and Ciabattoni’s paper [2]. Their paper uses the language of
L; however, the methods of [12,15] allow us to tackle the rational constants and
to derive analogous upper bounds for RPL, and we do that in Sect. 4; such upper
bounds then apply also to any fragments of language, i.a., the MV-language. For
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lower bounds (Sect.5), we work with the language of L, whereby the hardness
result applies also to RPL.

The decision version of the validity degree is coNP complete, and the SAT
problem for [0, 1]y, is NP complete. Looking at these and similar results on NP
completeness of decision versions for other common optimization problems, one
might ask what would the appropriate (many-one, poly-time) reduction notion
be between the optimization versions, and indeed if such reductions always exist.
Krentel [19] defines metric reductions in response to the former question and
shows that as far as these reductions are concerned, the answer to the latter is
negative unless P = NP (an outline of relevant results is in Sect. 3). Thus there
is a sense in which a mere fact that the decision version of a problem is NP
complete does not provide enough information about the optimization version.

Under standard complexity assumptions, one cannot even approximate the
validity degree efficiently: [16, Theorem 7.4] says that no efficient algorithm can
compute the validity degree for an empty theory within a distance of § < 1/2
unless P = NP.

The combined results of Sects. 4 and 5 yield the following statement.

Theorem 1. The validity degree task, considered in either L. or RPL, is com-
plete for the class FPNY under metric reductions.

This appears to be the first work to shift the focus from decision to opti-
mization problems as regards complexity of fuzzy logics, identifying a relevant
complexity class. We find it compelling to investigate complexity problems for
non-classical logics that have no counterpart in classical logic, and the valid-
ity degree problem, discussed here for L, presents one such research direction.
(While, e.g., admissible rules present another, now well established one.)

This work is about the propositional fragments of L. and RPL, so notions
such as language, term/formula, or assignment need to be read appropriately.

2 Lukasiewicz Logic and Rational Pavelka Logic

The basic language of propositional Lukasiewicz logic L has two function sym-
bols: unary — (negation) and binary @ (strong disjunction or sum). Other func-
tion symbols are definable: 1 as @ ® —x and 0 as —1; further, z @y is ~(—z ® —y)
(strong conjunction or product); x — yis "z @ y; x =y is (x — y) © (y — );
zVyis(x —y) —myor (y—z)—x;and z Ay is =(—z V —y).

The interpretations of @, ®, A and V are commutative and associative, so
one can write, e.g., x1 P - - - ® z,, without worrying about order and parentheses.
We write " for x © -+ © z and nx for x @ - - - @ z. Also, V and A distribute over

n times n times
each other and ® distributes over V.

Well-formed E-terms are defined as usual. The basic language is a point of
reference for complexity considerations in this paper, however we may at times
use the expanded language for clarity (as in classical logic).
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Definition 1. ([2]) For any term o(x1,...,2y), §(z)p denotes the number of
occurrences of the variable x in ¢, and fo = X7 #(x;)p.

The t function is a good notion of length for terms without iterated — sym-
bols (- = ¢ is a theorem of L). Our complexity results apply also to the
language of the Full Lambek calculus with exchange and weakening (FlLey ), i.€.,
{®,—,V,A,0,1} (and the MV-symbol @&). Indeed one observes that rendering ®
and — in the basic language does not affect length; for V and A, any occurrence
of these defined symbols can be expanded to the basic language in two different
ways (due to commutativity), and this can be used to rewrite any term with these
symbols with only polynomial increase in length.

2.1 MV-algebras

The general MV-algebraic semantics will not be needed in this paper, anymore
than a formal calculus for L. We will work with the standard MV-algebra [0, 1]y
the domain is the real interval [0,1] and with each MV-term ¢(z1,...,z,) we
associate a function f, : [0,1]™ — [0, 1], defined by induction on term structure
with f-, defined as 1 — f,,, foey as min(1, f, + fy). 1 is the only designated
element, accounting for the notions of ¢ruth/validity. For any assignment v in
[0,1],, v(e — ¥) =1 iff v(p) < v(¥), and thus v(p =) =1 iff v(p) = v(Y).

The class of MV-algebras is generated by [0, 1];, as a quasivariety; it is also
generated by the class of finite MV-chains, the (k + 1)-element MV-chain being
the subalgebra of [0, 1]y, on the domain {0,1/k,...,(k+1)/k,1}.

Provability from finite theories in L coincides with the finite consequence
relation of [0, 1]f,. We have bypassed introducing the formal calculus; to provide a
meaning to the references to L within this paper, let us adopt this as a definition.
We lose little since the algorithmic approach only tackles finite theories anyway.

A function f: [0,1]™ — [0, 1] is a McNaughton function if it is continuous and
piecewise linear with integer coefficients: there are finitely many linear polyno-
mials {p; }ier, with p;(z) = X% qaij x;+b; and @;, b; integers for each i, such that
for any @ € [0,1]™ there is an ¢ € I with f(@) = p;(@). McNaughton theorem
([21]) says that term-definable functions of [0,1];, coincide with McNaughton
functions. The theorem highlights the fact that one can provide a countably infi-
nite array of pairwise non-equivalent MV-terms for any fixed number of variables
starting with one, as opposed to the case of Boolean functions.

A polyhedral complex C'is a set of polyhedra (cells) such that if A is in C, so
are all faces of A, and for A, B in C;, AN B is a common face of A and B. Given
an MV-term ¢(z1, ..., %,) one can build canonically a polyhedral complex C(¢)
such that [0,1]" = |JC(y) and f, is linear over each n-dimensional cell of C(y).
The minimum of f,, is attained at a vertex of an n-dimensional cell of C(¢p). [2]
derives the upper bound (%")" for the least common denominator of any vertex
of any n-dimensional cell of C(¢p) (see also [23]). By [1] this is a tight bound on
cardinality of MV-chains witnessing non-validity of MV-terms.

For any MV-term ¢, the I-region of f, is the union of cells of C(¢) such
that f, attains the value 1 on all points in the cell. (The highest dimension of
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the cells in the 1-region of ¢ can range anywhere between 0 and n.) The 1-region
of f, is compact for any (. One can investigate the minimum of f relative to
the 1-region of an f,; details in [2].

2.2 RMV-algebras

The language of RPL expands the language {®, =} of L with a set @ = Q N[0, 1]
of constants. The constants are represented as ordered pairs of coprime integers
in binary. The size of the binary representation of an integer n is denoted |n|.

The standard RMV-algebra [0, 1]52 has [0, 1]y, as its MV-reduct and interprets
rational constants as themselves. As for L above, we identify RPL with the finite
consequence relation of [0, 1]5 If ¢ is an RMV-term, f, is the function defined
by ¢ in [0,1]2.

Let us extend the f function to obtain a good length notion for RMV-terms.
Rational constants can be viewed as atoms but the number of atom occurrences
is not a suitable length notion since it ignores the space needed to represent each
constant, which can be arbitrary with respect to the term structure.

Definition 2. Let an RMV-term ¢ have constants p1/q1,...,Pm/qm and vari-
ables 1, ... ,x,. For a rational p/q € [0,1], let #(p/q)p denote the number of

occurrences of p/q in ¢. Define o = X' 8(z:)p + D701 8(ps/q;)e(|ps] + lgs])-

Each rational r in [0, 1] is implicitly definable by an MV-term in [0, 1]5.%: i.e.,
there is an MV-term ¢(x1,...,2x) and an ¢ € {1,...,k} such that, for each
assignment v in [0, 1]y, we have v(z;) = r whenever v(p) = 1 (cf. [12,15]). To
implicitly define a rational p/q, with 1 < p < ¢, in [0, 1]y, first define 1/g, using
the one-variable term 2/, = (-2 /q)qfl, whereupon p/q becomes term-definable
under a theory containing this definition of 1/¢, namely we have z,,, = pzy/4
(cf. the technical results in [28,10,16]). With p and ¢ in binary, these implicit
definitions are exponential-size in |p| and |g|. One can make them polynomial-size
on pain of introducing (a linear number of) new variables.

Lemma 1. ([15, Lemma 4.1]) Forq € N, ¢ > 2, take the binary representation of
q—1, e, letq—1= X" p;2" withp; € {0,1} and p,, = 1. Let I = {i | p; = 1}.
In [0,1]g, the set

{yO =211 = y%a Y2 = y%v e Ym = y72n—1721/q = HiGIyi}
has a unique satisfying assignment, sending z; /4 to 1/q.
To define 1/¢, we need |q — 1| + 1 variables, and the length of the product in
the last equivalence is linear in |g|. Similarly one can achieve a polynomial-size
variant of an implicit definition for p/q.

It is shown in [12] how to obtain finite strong completeness of RPL
w.r.t. [0,1)% from finite strong completeness of L w.r.t. [0,1]5, based on the

2 On the other hand, no rationals beyond 0 and 1 are term-definable in [0,1], as a
consequence of McNaughton theorem.
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following statement ([12, Lemma 3.3.13]). Let 6,/, be an MV-term that implic-
itly defines the value p/q in a variable z,/, in [0,1]g. First, given an RMV-
term ¢ in variables z1,..., 2, and constants p1/qi,...,Pm/qm, let 6, stand for
Opyjqn © - © 0, /qm3, and let ¢* result from ¢ by replacing each constant
pi/q; with the variable z,, /,,. Now let {11,...,¢%} U {¢} be a finite set of
RMV-terms (in some variables x1,...,x,, particularly, with no occurrences of
y-variables or z-variables) and let 7 denote {11 © - -- ® 9% }. The statement says
that 7 Frpr ¢ iff 7% ® 004 Fr ¢*. The reason is that under 6,¢,, the vari-
ables that correspond to the implicitly defined constants behave exactly as the
constants would. Moreover, §¢, is an MV-term.

Lemma 2. Let 7 and ¢ be RMV-terms with rational constants (p1/qa,. ..,
Dm/Gm)- Using the § notation as above, we have:

1. 670 has 270 (Ipj| + |g; — 1) + 2m variables.
2. the length of 0:0,, written as an MV-term featuring @ and —, is at most
X7 (8Ipjl + 8lg; — 1] +4).

Finally we are ready to define the validity degree of a term ¢ in a theory T*
llellr = inf{v(p) | v model of T},

where a valuation v is a model of T if it assigns the value 1 to all terms in 7T'.
We only consider finite theories; for T' = {t1,..., ¢} write 7 = )1 © -+ - © Yy;
then ||¢||; = min{v(y) | v model of 7}. For 7 inconsistent, ||¢|; = 1. In the rest
of this paper, T is finite and represented by the term 7 as above. We define the
optimization problem.

VALIDITY DEGREE
Instance: RMV-terms 7 and ¢ (possibly without constants).
Output: ||¢]|+-

Lemma 3. [|¢llr = [l¢*[[(r+05.0,)-

3 Optimization Problems and Metric Reductions

This section briefly sketches our computational paradigm, reproducing some
notions and results on the structure of the oracle class FPNY as given in Krentel
[19], with a wider framework as provided in [27]. We also introduce an optimiza-
tion problem from [19] that will be used in Sect. 5.

In this paper we use the term optimization problem for what is sometimes
called an evaluation or cost version of a function problem (cf. [27]). In our setting,
the output is the validity degree [|¢||- (as an extremal value of f, on the 1-region
of f;), rather than an assignment at which the extremal value is attained.

3 Tt is assumed that the collections of auxiliary variables for the implicit definitions
of pi, ¢ with 1 < ¢ < n are pairwise disjoint and also disjoint from the variables
LlyeeeyTn.
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Let z : N — N be smooth.* FPNP[2(n)] is the class of functions computable
in polynomial time with an NP oracle with at most z(|z|) oracle calls for instance
. In particular, FPN? stands for FPNF [n0()].

Definition 3. ([19]) Let X be a finite alphabet and f,g : X* — N. A metric
reduction from f to g is a pair (h1,ha) of polynomial-time computable functions
where hy : X* — X* and he : X* x N — N, such that f(x) = ho(x, g(h1(x)))
for all x € X*.

The concept of a metric reduction is a natural generalization of polynomial-
time many-one reduction to optimization problems. It follows from the definition
that for each function z as above, FPNY'[2(n)] is closed under metric reductions.
The paper [19] provides examples of problems that are complete for FPNY under
metric reductions. We define one such problem (see [19]).

WEIGHTED MAX-SAT

Instance: Boolean CNF term (Cy A---ACy) (21, . .., xk) with weights on clauses
w1, ..., W, each w; positive integer in binary.

Output: the maximal sum of weights of true clauses over all (Boolean) assign-
ments to the variables x1, ..., xg.

Theorem 2. ([19]) WEIGHTED MaX-SAT is FPNY complete.

The paper [19] provides a separation result for problems in FPNP | a simple
form of which is given below. In particular, under standard complexity assump-
tions there are no metric reductions from FPNF complete problems (such as
WEIGHTED MAX-SAT) to some problems in FPNY[O(log n)], such as the VER-
TEX COVER problem.

Theorem 3. ([19]) Assume P # NP.
Then FPNP[O(loglogn)] € FPNP[O(logn)] € FPNY [p€M)].

4 Upper Bound: Validity Degree is in FPNF

We present a polynomial-time oracle computation for VALIDITY DEGREE, using
a coNP complete decision version of the problem as an oracle; this yields mem-
bership of VALIDITY DEGREE in FPNY. The instances of the problem are pairs
(1, ) of RMV-terms, i.e., terms with the MV-symbols @ and — where atoms are
variables and rational constants. The following oracle will be used.

D-RPL-GRADED-PROVABILITY
Instance: (7, ¢, k) with 7,0 RMV-terms and & a rational number in [0, 1].
Output: 7 Frpr, £ — @7

4 Le., z is nondecreasing and the function 1” — 1*(™ is polynomial-time computable.
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Note that 7 Frpr, & — ¢ iff & < ||¢||-. By [13], RPL-provability from finite
theories (given RMV terms 7 and ¢, it is the case that 7 Frpr, ¢?) is coNP
complete. Hence, so is D-RPL-GRADED-PROVABILITY.

The oracle computation can employ a binary search, given an explicit upper
bound on denominators. To obtain a polynomial-time (oracle) computation, the
result of [12] that o]/, is rational is not enough: we need an upper bound N (7, ¢)
on the denominator that is in itself of polynomial size (in binary).

To expose the algebraic methods employed in this section, let us start with
a simpler related problem, interesting in its own right: the natural optimization
version of the term satisfiability problem in the standard MV-algebra [0, 1]g,.

MAX VALUE
Instance: MV-term (21, ...,Zy).
Output: max f,, on [0, 1]".

This problem reduces to VALIDITY DEGREE: one maximizes f,, by minimizing
f-, under an empty theory. As mentioned in Sect. 1, even this simpler problem
cannot be efficiently approximated (see [16, Theorem 7.4]).

Lemma 4. Let p1/q1 and pa/qs be two distinct rational numbers and N a pos-

1
> N

itive integer, let q1,qo < N. Then ’% - ’q’—;

Lemma 5. Let a < b be rationals and N a positive integer. Assume the interval
[a,b) contains exactly one rational ¢ with denominator at most N, and other
rationals with denominator at most N are at a distance greater than b — a from
c. There is a poly-time algorithm that finds ¢ on input a,b, and N in binary.
Theorem 4. MAX VALUE is in FPNT.

Proof. Let ¢(x1,...,2,) be an MV-term. Then f, is maximal on a rational
vector (p1/q1, .- ., Pn/qn); the least common denominator of the vector is at most
(ﬁ%’)” ([2, Theorem 14]). It follows that the denominator of f,(p1/q1,-..,Pn/qn)
is at most N(p) = (%‘")”

We sketch a polynomial-time algorithm computing max(f,) using binary
search on rationals in [0, 1] with denominators at most N(y), using the general-
ized satisfiability (GENSAT), known to be NP complete ([25]), as oracle: given
MV-term ¢ and a rational r € [0, 1], is max(f,) > r?

Test GENSAT (g, 1). If so, output 1 and terminate.

Otherwise, let a =0, b =1, and k£ = 0.

Repeat

k=k+1; if GENSAT(¢,a+ b/2), let a = a + b/2, otherwise let b = a + b/2
until 28 > (N (¢))2.

Finally, find ||¢||; in [a,b) relying on Lemma 5.

Assume the algorithm runs through the loop at least once. After the search
terminates, k is the least integer s.t. 2% > (N (¢))?, i.e., k > 2log(N(¢)) > k — 1.
hence the number k of passes through the loop is polynomial. Also, the semi-closed
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interval [a,b) of length 1/2F < 1/(N(p))? contains max f,, and by Lemma4,
max f, is the only value in [a, b) with denominator at most N(¢). The values of a
and b are [ /2% and (I + 1) /2" respectively, so |a| and |b| are polynomial in k.

Let us address the VALIDITY DEGREE problem. The binary search will be
analogous, we need to establish an upper bound for the denominators. The fol-
lowing lemma can be obtained from the proof of [2, Theorem 17], a result on
finite consequence relation in L.

Lemma 6. Let 7 and ¢ be MV-terms and let n be the number of variables in
these terms. Assume M,N € N are coprime non-negative integers such that

lloll- = M/N. Then
N < (HTHW)
n

Proof. Following [2] and the references therein, one can build, in a canonical
way, (n-dimensional®) polyhedral complexes C(7) and C(¢) such that |JC(7) =
[0,1]" = UC(p), with f; linear over each n-dimensional cell of C(7) and f,,
linear over each n-dimensional cell of C(¢p).

It follows from the analysis of [2] that the minimum of f, on the 1-region of
7 is attained at a vertex (of an n-dimensional cell) of the common refinement of
C(7) and C(¢p). It can further be derived from that paper that the least common
denominator of any vertex in this common refinement is bounded by (%)";
the proof is analogous to the case when 7 is void.

Hence, there is a rational vector (p1/q¢i,...,pn/qn) on which f; is 1, f,
attains the value |||, and the least common denominator of (p1/q1,...,Pn/qn)

is (E7£22)". Tt follows that N < (47t

Denote by N(7,¢) the obtained upper bound on the denominator of ||¢||,
for MV-terms 7 and ¢. To provide an upper bound N*(7,¢) on the denomina-
tor of |||+ in case 7 and ¢ are RMV-terms, we rely on Lemma3 in order to
apply the existing results for MV-terms: namely, we use the upper bounds on

HCP*H(T*@(STQgO).

Lemma 7. Let T and ¢ be RMV-terms. N*(7,¢) = N(T* @ dr04, ¢*) =
(ﬁT*-i-ﬁéT@w-Hitp* K

3

Orop, and ©*.

= , where n denotes the number of variables in the terms 7*,
Lemma 8. For 1 and ¢ RMV-terms, N*(7, ) is polynomial size in T and fp.

Theorem 5. VALIDITY DEGREE is in FPNY.

5 The dimension of f and f, can be extended to n in a number of ways, e.g., supplying
dummy variables. This will modify the length by a linear function of n.
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Proof. We provide a polynomial-time Turing reduction of VALIDITY DEGREE
to D-RPL-GRADED-PROVABILITY; i.e., for RMV-terms 7 and ¢ the algorithm
computes ||| in time polynomial in 744, relying on the oracle. The algorithm
is based on a binary search analogous to the algorithm for MAX VALUE from
Theorem 4.

The initial test is D-RPL-GRADED-PROVABILITY(1, 7, ¢), where a positive
answer yields ||¢l|; = 1.

If this is not the case, the binary search is initiated. The upper bound N =
N*(7,¢) on denominator of ||¢||, is as in Lemma 7 and 8. This provides discrete
structure to search in and the terminating condition 2¥ > N?2.

The final application of Lemma 5 is analogous to the proof of Theorem 4.

5 Lower Bound: Validity Degree Is FPNY Hard

We give a metric reduction of WEIGHTED MAX-SAT to VALIDITY DEGREE. In
this section the VALIDITY DEGREE problem is considered for MV-terms 7 and
p, i.e., we work in the MV-fragment of the RMV language. The lower bound
obtained for the MV-language then applies also to RMV-language.

Theorem 6. VALIDITY DEGREE is FPNY hard under metric reductions.

Proof. For clarity, the proof is divided in two parts. First, we reduce WEIGHTED
MAX-SAT to VALIDITY DEGREE in an MV-language with the definable symbols.
Subsequently we show how to polynomially translate general MV-terms that
occur in the range of the metric reduction to MV-terms in the basic language.

We define the function h; from Definition 3, which takes inputs to WEIGHTED
MAX-SAT and transforms them to inputs to VALIDITY DEGREE. Consider a
classical CNF-term (with language A, V, and =) ¢ with variables 1, ..., 2 and
weights wy, ..., w, for the clauses Cq,...,C, of p. One obtains the solution
to WEIGHTED MAX-SAT by maximizing X7 ;v(C;)w; over all Boolean assign-
ments v to x1,...,x,. To utilize VALIDITY DEGREE, we need to render this
expression in the MV-language and to isolate the Boolean semantics among the
broader semantics of [0, 1]g,.

We define a finite theory T" and a term @ in stages by making several obser-
vations. At any stage, T is assumed to include terms specified in the earlier
stages.

(a) On any input (7, ), VALIDITY DEGREE gives the minimum of f, in [0, 1],
over the 1-region of f;. The routine can also compute the maximum of f, on
the same domain if the input is (7, =¢) and the output is subtracted from 1.

(b) To force Boolean assignments, for each 1 < j < k put x; V -z, in T'. Since V
evaluates as max in [0, 1]y, this condition is true only under (standard MV-)
assignments where either x; is 1, or —z; is 1, i.e., z; is 0.
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(c) The algebra [0, 1];, can only correctly add up to the sum 1.° Thus the weights
wi, ..., w, need to be scaled. The computations with weights are bounded
by w = X7 ,w;, which is the output of WEIGHTED MAX-SAT in case ¢ is
satisfiable, so an appropriate factor to scale by is 1/w. The new weights are
w; = w;/w for each i € {1,...,n} This is an order-preserving transformation
of the weights and the new weights are of poly-size in the input size.

(d) Multiplication is not available, so e(C;)w; cannot be expressed with an MV-
term. One can however implicitly define some rational expressions as follows.
— Introduce a new variable b. To implicitly define 1/w in variable b, include

in T the system from Lemma 1 that polynomially renders the condition
b= (=b)*"!; now any model v of T will have v(b) = 1/w.

— For 1 < ¢ < n, introduce a new variable y;. Include y; — b in T'; any
model v of T will have v(y;) < 1/w. Further, include in 7" a polynomial
rendering of y; @ y; P --- B y; = C;, using Lemma 1; then for any model v

w times
of T we have that v(C;) = 0 implies v(y;) = 0, whereas v(C;) = 1 implies
v(y;) > 1/w, which in combination with the other condition in this item
gives v(y;) = v(C;) /w.

— For 1 < i < n, introduce a new variable z;. Include in T' a polynomial
rendering of y; ® y; @ - - - ® y; = z;, again relying on Lemma 1. Any model

—_—

w; times

v of T' will have v(z;) = v(C;)w,.
To recap, we define T" as the following set of MV-terms:

— x; V-x; for each j € {1,...,k};

— a polynomial-sized rendering of b = (=b)*~! (cf. Lemma1);

— for 1 <i<mn, y; — b and a poly-sized rendering of wy; = C; (Lemma 1);
— for 1 <4 < n, a poly-sized rendering of w;y; = z; (Lemmal).

Let a term 7 represent T, let @ stand for (21 ® 2@ - D z,). Let m = || P,
i.e., m is the rational number that VALIDITY DEGREE returns on input 7 and
&. We claim that (1 —m)w (the function hs from Definition 3) is the solution to

the instance C1,...,C, and wy,...,w, of WEIGHTED MAX-SAT on input.
To see this, observe that the models of 7 feature precisely all Boolean assign-
ments to variables {z1,...,2;}. Each such model v extends to the new vari-

ables b, y; and z; (1 < i < n), namely v(b) = 1/w, v(y;) = (1/w)v(C;), and
v(2z;) = (w;/w)v(C;). In particular, if v models T', then the values of b, y; and
z; under v are determined by the values that v assigns to the z-variables (i.e.,
the “Boolean” variables). Except for b, the sets of variables introduced for each
i are pairwise disjoint.

It follows from the construction of 7 and @ that any Boolean assignment that
yields an extremal value of WEIGHTED MAX-SAT also produces an extremal
value of VALIDITY DEGREE and vice versa. It is easy to check that the order-
reversing operations (taking 1 —y back and forth) and the scaling and descaling

5 Addition, represented by the strong disjunction @, is truncated at 1.
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work as expected (both are order-preserving). Hence, the reduction correctly
computes an input to VALIDITY DEGREE and correctly renders the result of this
routine as an output of WEIGHTED MAX-SAT.

Finally, both functions involved are clearly polynomial-time functions.

For the second part of the proof, we notice that @ is a term in the basic
language. As for 7, recall that one can render ¢ ® ¥ and ¢ — % in the basic
language, using the definitions, without changing the number of variable occur-
rences; this includes the nested occurrences of ® in (a rendering of) (—b)¥~1
(recall that the product in the p-size variant is of cardinality |w]|). To rewrite
each disjunction C; in the basic language, we apply to the following claim.”

Claim: let « = (a1 V- - -V, ), where «; are terms in the basic language. There
is a term ( in the basic language L-equivalent to o and such that 43 = 2fa.

To justify the claim, let o = o’ V ay,, where o/ = (a1 V ---V @, _1). Then o/
is equivalent to (a/ — «,) — «,. Repeat this process for o’ unless it coincides
with ay. This produces a term equivalent to o, with — as the only symbol; then
rewrite — in the basic language.

6 Closing Remarks

This result attests a key role of algebraic methods for computational complexity
upper bounds in propositional Lukasiewicz logic. Syntactic derivations are not
even discussed; indeed at present we have no idea how to employ them.

A proof-theoretic counterpart of a validity degree is the provability degree:
|l = sup{r | T FrpL 7 — ¢}, with the provability relation defined by extend-
ing Lukasiewicz logic with suitable axioms. Hajek proved Pavelka completeness
for RPL in [12]: for any choice of T' and ¢, || coincides with ||¢||r. Our results
thereby apply also to provability degrees (for finite theories).

To our knowledge there are no works explicitly dealing with the more prag-
matical tasks of providing algorithms computing the validity degree (or maximal
value), identifying fragments where they might be efficient, or similar.

We have obtained hardness for FPNY under metric reductions for VALIDITY
DEGREE but not MAX VALUE. A somewhat similar reduction of WEIGHTED
MAX-SAT to a 0-1 integer programming problem was presented in [19], where
roughly speaking, some conditions in the matrix correspond to some of our
conditions in the theory. We do not know how to avoid employing the theory,
and cannot supply a FPNY hardness proof for MAX VALUE at present.
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7 Slightly more general claim was made, without proof, at the beginning of Sect. 2.
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