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1 Introduction

A large amount of mathematical statements are of the logical form

∀f(A(f) → ∃gB(f, g)), (1)

where f and g may be tuples. Such statements are often called existence state-
ments since they argue the existence of some objects. One can see existence
statements represented as sentences of the form (1) as problems to be solved. In
such a context, any f such that A(f) holds is called an instance of the problem
and g is called a solution to the instance. Uniform relationships between exis-
tence statements have been investigated extensively in computable analysis and
classical reverse mathematics ([4–8,15] etc.). The investigation usually employs
the following reduction: a Π1

2 sentence P of the form (1) is reducible to another
Π1

2 sentence Q of the form (1) if there exist Turing functionals Φ and Ψ such that
whenever f1 is an instance of P, then Φ(f1) is an instance of Q, and whenever g2
is a solution to Φ(f1), then g1 := Ψ(f1, g2) is a solution to f1. This is a particu-
lar case of Weihrauch reducibility for Π1

2 sentences with Baire space as their
represented spaces (see [8, Appendix]). For a detailed account of uniformity, the
parallelizations:

∀〈fn〉n∈N
(∀nNA(fn) → ∃〈gn〉n∈N

∀nNB(fn, gn)),

have been studied in computable analysis ([4,5]) and also in classical reverse
mathematics under the name of sequential versions ([8,11,12]). In particular,
the weak König lemma WKL, is not Weihrauch reducible to the intermediate
value theorem IVT, but is so to the parallelization of IVT (see [4]).
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On the other hand, there is another development on the relation between
existence statements from constructive mathematics [3], where every existence
is shown by giving a construction of the witness entirely in the proofs. Ishihara
and others have developed reverse mathematics first informally in Bishop’s con-
structive mathematics, and later formally in two-sorted intuitionistic arithmetic
([1,9,14] etc.). In particular, the intermediate value theorem IVT is known to
be equivalent to the weak König lemma WKL over the constructive base theory
containing a countable choice principle (see [1, Section 1]).

Interestingly, there are several corresponding results between constructive
reverse mathematics and computability-theoretic investigations on paralleliza-
tions or sequential versions, including the above mentioned facts on WKL and
IVT. In particular, it seems to be believed in the community of computable
analysis that constructive equivalences of two existence statements in Bishop’s
constructive mathematics (which accepts the use of a countable choice principle)
correspond to Weihrauch equivalences of their parallelizations (see [6, Footnote
c]). In this paper, we verify that this experimental belief is plausible by showing
some meta-theorems in the framework of finite-type arithmetic together with
observations in some concrete examples. This sheds light on the correspondence
between computable analysis and constructive reverse mathematics which have
been developed independently until recently. The investigation in this paper is
based on the previous work [10] of the author himself.

As a framework for our investigation, we employ an extensional variant
E-HAω of intuitionistic arithmetic in all finite types and its fragment ̂E-HA

ω
�

from [17, Section 3.3]. Recall that finite types are defined as follows: N is a
type; if σ and τ are types, then so is σ → τ . Note that ̂E-HA

ω
� has a recursor

only of type N and its induction schema is restricted to quantifier-free formu-
las. The λ-abstraction is officially defined by using the combinators. The set
of the closed terms of E-HAω and that for ̂E-HA

ω
� are denoted by T and T0

respectively. The set-theoretic functionals definable in T (resp. T0) are called
Gödel (resp. Kleene) primitive recursive functionals of finite type. A classical
variant E-PAω (resp. ̂E-PA

ω
�) is obtained from E-HAω (resp. ̂E-HA

ω
�) by adding

the axiom scheme of excluded middle A ∨ ¬A. The language of our systems
contains a binary predicate symbol =N for equality between objects of type N

only. Throughout this paper, we employ the same notations as in [10]. Note that
the type superscripts (for terms) and subscripts (for equality) are omitted when
they are clear from the context. A tuple of terms is denoted with a underline as
t. In addition, −̇ denotes the primitive recursive cut-off subtraction, and {0, 1}m

denotes the set of all binary sequences of length m. Recall that an ∃-free formula
is a formula which does not contain ∨ and ∃. A countable choice principle AC0,ω

is the following schema:

(AC0,ω)∀xN∃fτA(x, f) → ∃FN→τ∀xNA(x, Fx),

where τ is any type. This principle is crucial for our meta-theorems (see
Remark 8). For the other principles in this paper, we refer the reader to [10,
Section 1.1].
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2 Meta-theorems

In this decade, there are several attempts to reveal the proper relation between
constructive reverse mathematics and Weihrauch reducibility in classical reverse
mathematics and computable analysis ([10,12,13,18,20] etc.). In particular,
the author formalized in [10, Definition 2.5] the primitive recursive variants
of Weihrauch reduction between existence statements P and Q formalized as
̂E-HA

ω
�-sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f(A2(f) → ∃gB2(f, g)) in the

context of finite-type arithmetic as follows:

– For a finite-type arithmetic Sω containing E-HAω, P is Gödel-primitive-
recursive Weihrauch reducible to Q in Sω if there exist closed terms s
and t (of suitable types) in T such that Sω proves

∀f(A1(f) → A2(sf)) ∧ ∀f, g′ (B2(sf, g′) ∧ A1(f) → B1(f, tf g′)
)
. (2)

– For a finite-type arithmetic Sω containing ̂E-HA
ω
�, P is Kleene-primitive-

recursive Weihrauch reducible to Q in Sω if there exist closed terms s
and t (of suitable types) in T0 such that Sω proves (2).

In addition, P is normally reducible to Q in Sω if Sω proves

∀f
(
A1(f) → ∃f ′ (A2(f ′) ∧ ∀g′ (B2(f ′, g′) → ∃gB1(f, g)

)))
.

The notions of Gödel/Kleene-primitive-recursive Weihrauch reducibility is a nat-
ural restriction of formalized Weihrauch reducibility e.g. in [8,18] where Turing
functionals for the reduction are replaced by primitive recursive functionals in
the sense of Gödel/Kleene. The normal reducibility, which requires a proof of
Q → P with a specific form, is a stronger notion than just proving Q → P (see
[10, Remark 2.9]). Since intuitionistic finite-type arithmetic with a choice princi-
ple roughly corresponds to Bishop’s constructive mathematics, one may regard
the normal reducibility in a nearly intuitionistic finite-type arithmetic as a sort
of constructive reducibility. In [10, Theorem 2.10], the author showed a meta-
theorem stating that the primitive-recursive Weihrauch reducibility verifiably in
a fragment of classical finite-type arithmetic is equivalent to the normal reducibil-
ity in the corresponding (nearly) intuitionistic finite-type arithmetic for all exis-
tence statements formalized with ∃-free formulas. Thus constructive reducibility
can be captured by the primitive-recursive variant of Weihrauch reducibility with
an additional restriction on the verification theory (which has not been taken into
account in computable analysis). Of course, the Weihrauch reductions between
concrete existence statements are not always primitive recursive (in the sense of
Gödel/Kleene). In addition, there are many existence statements which are not
formalized with ∃-free formulas. Nonetheless, there seem to be plenty of exam-
ples to which the meta-theorem is applicable. In fact, the Weihrauch reductions
between concrete existence statements can be verified usually in a weak theory
(cf. [10, Section 3]). On the other hand, any characterization on parallelizations
was still missing.
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We call sentences of the form ∀f(A(f) → ∃gB(f, g)), where f :≡ fσ1
1 , . . . , fσk

k

and g :≡ gτ1
1 , . . . , gτl

l are finite tuples of variables, normal existential sen-
tences. In the language of finite-type arithmetic, the parallelization of this sen-
tence is formalized as

∀fN→σ1
1 , . . . , fN→σk

k

(∀nNA (f1n, . . . , fkn) →
∃gN→τ1

1 , . . . , gN→τl
l ∀nNB (f1n, . . . , fkn, g1n, . . . , gln)

)
,

which is again a normal existential sentence. For each normal existential sentence
P, we write its parallelization as P̂. Throughout this paper, we sometimes iden-
tify a normal existential sentence with the indicated existence statement. The
following proposition is shown straightforwardly by the soundness of modified
realizability [17, Theorem 5.8].

Proposition 1. For normal existential sentences P and Q with ∃-free formulas
of ̂E-HA

ω
� (in the sense of Theorem 6), if P is normally reducible to Q in E-HAω+

ACω + IPω
ef , then P̂ is normally reducible to Q̂ in E-HAω. The analogous result

also holds where E-HAω is replaced by E-HAω + QF-AC0,0 + Σ0
1-DNS0, E-HAω +

Π0
1-AC0,0 +Σ0

2-DNS0, E-HAω +ACω +mr-DNSω, ̂E-HA
ω
�, ̂E-HA

ω
�+QF-AC0,0 +

Σ0
1-DNS0, ̂E-HA

ω
� + Π0

1-AC0,0 + Σ0
2-DNS0, or ̂E-HA

ω
� + ACω + mr-DNSω.

The following corollary is obtained immediately from [10, Theorem 2.10] and
Proposition 1 together with the general fact that P is normally reducible to P̂.

Corollary 2. Let Sω be one of the systems E-PAω, E-PAω +QF-AC0,0, E-PAω +
Π0

1-AC0,0
, E-PAω + ACω, ̂E-PA

ω
�, ̂E-PA

ω
� + QF-AC0,0, ̂E-PA

ω
� + Π0

1-AC0,0, and
̂E-PA

ω
�+ACω. For P and Q as in Proposition 1, if P is Gödel/Kleene-primitive-

recursive Weihrauch reducible to Q in Sω, then P is so to Q̂ in Sω.

Remark 3. The relation between WKL and IVT in computable analysis, which
is mentioned in Sect. 1, shows that the converse of Corollary 2 does not hold.

From the perspective of Corollary 2 and Remark 3, it is worthwhile to
characterize the property that P is Gödel/Kleene-primitive-recursive Weihrauch
reducible to Q̂ in Sω in some natural context of constructive reverse mathematics.
For this purpose, we introduce the following notions:

Definition 4. Let P and Q be existence statements formalized as normal exis-
tential sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f1, . . . , fk(A2(f1, . . . , fk) →
∃gB2(f1, . . . , fk, g) of ̂E-HA

ω
� respectively. For a finite-type arithmetic Sω con-

taining ̂E-HA
ω
�, P is normally T-derivable from Q in Sω if there exist closed

terms s1, . . . , sk (of suitable types) in T such that Sω proves

∀f
(
A1(f) → ∀mNA2(s1mf, . . . , skmf)

)
(3)

and

∀f

(
A1(f) ∧ ∀m

(
A2(s1mf, . . . , skmf) → ∃g′B2

(
s1mf, . . . , skmf, g′))

→ ∃gB1(f, g)

)

.

(4)
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The notion that P is normally T0-derivable from Q in Sω is defined in the
same manner with using T0 instead of T. In fact, “A2(s1mf, ..., skmf) →” in
(4) is redundant in the presence of (3).

Remark 5. For existence statements P : ∀f(A1(f) → ∃gB1(f, g)) and Q, the
fact that P is normally derivable from Q demands some proof of Q → P with
the following structure:

1. Fix f such that A1(f);
2. Assuming A1(f), derive ∃gB1(f, g) by using Q for the countably many

instances which are given primitive recursively in f .

For existence statements P and Q, it is quite common in practical mathematics
(not only in constructive mathematics) to show Q → P in this manner.

On the other hand, the normal derivability is properly weaker than the nor-
mal reducibility in the context of (nearly) intuitionistic systems. Note also that
the normal derivability relation is reflexive and transitive.

Theorem 6. Let P and Q be existence statements formalized as normal exis-
tential sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f1, . . . , fk(A2(f1, . . . , fk) →
∃g′B2(f1, . . . , fk, g′) of ̂E-HA

ω
� respectively with ∃-free formulas A1, A2, B1, and

B2. Then the following hold:

1. P is Gödel-primitive-recursive Weihrauch reducible to Q̂ in E-PAω if and only
if P is normally T-derivable from Q in E-HAω + AC0,ω.

2. P is Kleene-primitive-recursive Weihrauch reducible to Q̂ in ̂E-PA
ω
� if and

only if P is normally T0-derivable from Q in ̂E-HA
ω
� + AC0,ω.

Proof. (1) Assume that P is Gödel-primitive-recursive Weihrauch reducible
to Q̂ in E-PAω. As in the proof of [10, Theorem 2.10], by the negative
translation (see [17, Section 10.1]), we have that E-HAω proves ∀f(A1(f) →
∀nNA2(s1fn, . . . , skfn)) and ∀f,G′(∀nNB2(s1fn, . . . , skfn,G′n) ∧ A1(f) →
B1(f, tfG′)) for some closed terms s1, . . . , sk and t in T. Put a closed term
s̃i as λn, f. sifn for each i ∈ {1, . . . , k}. Then we have that E-HAω proves

∀f(A1(f) → ∀nNA2(s̃1nf, . . . , s̃knf)) (5)

and
∀f,G′ (∀nNB2(s̃1nf, . . . , s̃knf), G′n) ∧ A1(f) → ∃gB1(f, g)

)
. (6)

Applying AC0,ω to (6), we have

∀f
(∀nN∃g′B2(s̃1nf, . . . , s̃knf), g′) ∧ A1(f) → ∃gB1(f, g)

)
. (7)

Then it follows from (5) and (7) that

∀f

(
A1(f) ∧ ∀nN

(
A2(s̃1nf, . . . , s̃knf) → ∃g′B2

(
s̃1nf, . . . , s̃knf, g′))

→ ∃gB1(f, g)

)

. (8)
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Thus P is normally T-derivable from Q in E-HAω + AC0,ω.
For the converse direction, assume that E-HAω +AC0,ω proves (5) and (8) for

some closed terms s̃1, . . . , s̃k in T. By (8), we have that E-HAω + AC0,ω proves
(7), and hence, (6).

As in the proof of [10, Theorem 2.10], by the soundness of modified real-
izability [17, Theorem 5.8], there exist closed terms t in T such that E-HAω

proves

∀f,G′ (A1(f) ∧ ∀nNB2

(
s̃1nf, . . . , s̃knf,G′n

) → B1(f, tf G′)
)
. (9)

Put a closed term si as λf, n. s̃inf for each i ∈ {1, . . . , k}. Then, by (5) and (9),
we have that P is Gödel-primitive-recursive Weihrauch reducible to Q̂ in E-HAω

(and hence, so is in E-PAω) with s1, . . . , sk and t as the witnesses.
The same proof works also for (2). ��
Combining the proof of Theorem 6 with [10, Lemma 2.1] and [10, Lemma

2.2] as in [10, Theorem 2.10], we have the following:

Theorem 7. Let P and Q be existence statements formalized as normal exis-
tential sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f ′(A2(f ′) → ∃g′B2(f ′, g′) of
̂E-HA

ω
� respectively with ∃-free formulas A1, A2, B1, and B2. Then

1. P is Gödel-primitive-recursive Weihrauch reducible to Q̂ in E-PAω+QF-AC0,0

(resp. E-PAω + Π0
1-AC0,0

, E-PAω + ACω) if and only if P is normally T-
derivable from Q in E-HAω + AC0,ω + Σ0

1-DNS0 (resp. E-HAω + AC0,ω +
Σ0

2-DNS0, E-HAω + ACω + mr-DNSω).
2. P is Kleene-primitive-recursive Weihrauch reducible to Q̂ in ̂E-PA

ω
� +

QF-AC0,0 (resp. ̂E-PA
ω
� + Π0

1-AC0,0
, ̂E-PA

ω
� + ACω) if and only if P is nor-

mally T0-derivable from Q in ̂E-HA
ω
� + AC0,ω + Σ0

1-DNS0 (resp. ̂E-HA
ω
� +

AC0,ω + Σ0
2-DNS0, ̂E-HA

ω
� + ACω + mr-DNSω).

Remark 8. The meta-theorem where AC0,ω is replaced by QF-AC0,0 in The-
orem 7.(2) does not hold: If it holds, by Proposition 10 below, we have that
WKL is normally T0-derivable from LLPO in ̂E-HA

ω
� + QF-AC0,0 + Σ0

1-DNS0,
and hence, WKL is provable in ̂E-PA

ω
� + QF-AC0,0 (cf. Remark 5). This is a

contradiction (see [16]). The same argument holds also for Theorem 7.(1).

3 Application

There seem to be many results (proofs) in computable analysis and constructive
reverse mathematics to which our meta-theorems are applicable. For the purpose
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of demonstrating the availability of our meta-theorems, we inspect the existing
proofs in both of the contexts on the relation between the weak König lemma
WKL and the lesser limited principle of omniscience LLPO. This is the core for
the relation between the intermediate value theorem IVT and WKL which is
mentioned in Sect. 1.

Recall that WKL states that for any infinite binary tree, there exists an
infinite path through the tree (see [10, Section 3.1] for the formal definition) and
LLPO is formalized as

∀fN→N

0 , fN→N

1

(¬ (∃xNf0(x) = 0 ∧ ∃yNf1(y) = 0
)

→ ∃kN((k = 0 → ¬∃x f0(x) = 0) ∧ (k 
= 0 → ¬∃y f1(y) = 0))

)

in the language of ̂E-HA
ω
�. Both of them are normal existential sentences of the

form to which our meta-theorems are applicable. We also recall the following
disjunctive variant of Π0

1-AC0,0 from [2,14]:

Π0
1-AC

0,0

∨ : ∀nN
(∀xNAqf(n, x) ∨ ∀yNBqf(n, y)

)

→ ∃h∀n ((h(n) = 0 → ∀xAqf(n, x)) ∧ (h(n) 
= 0 → ∀y Bqf(n, y))) ,

where Aqf and Bqf are quantifier-free. In the context of constructive reverse
mathematics, Ishihara [14, Section 5] first showed that WKL is equivalent to
LLPO plus Π0

1-AC0,0
∨ over a weak intuitionistic arithmetic. More recently, Berger,

Ishihara, and Schuster [2, Section 6] provided a simpler proof of the fact. On the
other hand, in the context of computable analysis, Brattka and Gherardi [5,
Theorem 8.2] showed that WKL is Weihrauch equivalent to the parallelization
of LLPO while it is not so to LLPO.

Proposition 9. WKL is normally T0-derivable from LLPO in ̂E-HA
ω
� +

Π0
1-AC0,0

∨ + QF-AC0,0 + Σ0
1-DNS0.

Proof. The proof is basically the same as that for [2, Theorem 27]. We rea-
son informally in ̂E-HA

ω
� + Π0

1-AC0,0
∨ + QF-AC0,0 + Σ0

1-DNS0 and let TN→N be
an infinite binary tree (officially given by its characteristic function as in [10,
Section 3.1]).

For each i ∈ {0, 1} and each code uN of a finite sequence of natural num-
bers, define Ci(u, T ) as ∃mN (¬D(m,u ∗ 〈i〉) ∧ D(m,u ∗ 〈1 − i〉)), where D(m,u)
expresses that there exists a finite binary sequence vN of length m such that u∗v
is contained in T . Then we have ∀uN¬ (C0(u, T ) ∧ C1(u, T )). Notice that there
exist closed terms s0 and s1 of type N → ((N → N) → (N → N)) in T0 such
that

∃mN siuTm = 0 ↔ Ci(u, T )

for each i ∈ {0, 1}. Thus we have ∀uN¬(∃mN s0uTm = 0 ∧ ∃mN s1uTm = 0).
This validates the first condition of normal derivability in Definition 4.

For the second condition, assume also that for each uN, there exists kN

such that k = 0 → ¬∃mN s0uTm = 0 and k 
= 0 → ¬∃mN s1uTm = 0.
Using a dependence choice principle which is derived from Π0

1-AC0,0
∨ (see [2,
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Corollary 5]), we have a function hN→N such that ∀uN¬∃mN sh(u)

(
hu

)
Tm =

0, equivalently, ∀uN¬Ch(u)

(
hu, T

)
. As in the proof of [2, Theorem 27], one

can show that ∀nN,mND(m,hn) by using Π0
1 induction which is provable in

̂E-HA
ω
� + QF-AC0,0 + Σ0

1-DNS0 (see [9, Lemma 20]). Then it follows that h is
an infinite path through T . ��

Applying Theorem 7.(2) to Proposition 9, as a corollary, we obtain the fol-
lowing result in the context of computable analysis:

Proposition 10. WKL is Kleene-primitive-recursive Weihrauch reducible to
̂LLPO in ̂E-PA

ω
� + QF-AC0,0.

On the other hand, by refining the proof of [5, Theorem 8.2] (where WKL
itself is used for the verification as it is mentioned there), we can also have a
direct proof of Proposition 10:

Proof. Recall that ̂LLPO states that for all f0 and f1 of type N → (N → N), if
∀nN¬ (∃xNf0nx = 0 ∧ ∃xNf1nx = 0

)
, then there exists hN→N such that

∀nN
((

hn = 0 → ¬∃xNf0nx = 0
) ∧ (

hn 
= 0 → ¬∃xNf1nx = 0
))

. (10)

We reason informally in ̂E-PA
ω
� + QF-AC0,0 and let TN→N be an infinite binary

tree (officially given by its characteristic function).
As in the proof of [5, Theorem 8.2], for each i ∈ {0, 1}, let PT

k,i denote the set
of finite binary sequences u such that u∗〈i〉 is incomparable with all branches in
T of length k. We define f0 and f1 of type N → (N → N) primitive recursively
(in the sense of Kleene) in the given tree T as

fiux =
{

0 if x is the least k such that u ∈ PT
k,i \ PT

k,1−i,

1 otherwise,

for i ∈ {0, 1}. For each uN, we have ¬ (∃xNf0ux = 0 ∧ ∃xNf1ux = 0
)

straightfor-
wardly by definition.

For the second condition, let h satisfy (10) for f0 and f1 defined above. Define
pN→N primitive recursively in h as

p(k) =
{

0 if h (pk) = 0,
1 otherwise,

For verifying that p is an infinite path through T , it suffices to show that for all
nN and mN, there exists u ∈ {0, 1}m such that pn∗u is in T . In the following, we
show this assertion by Π0

1 induction (which is provable in ̂E-PA
ω
�+QF-AC0,0) on

nN. When n = 0, we are done since T is infinite. Assume that for all mN, there
exists u ∈ {0, 1}m such that pn∗u is in T . Our goal is to show the corresponding
assertion for n + 1. Based on classical logic, we consider the following 4 cases:

1. There exists kN such that pn ∈ PT
k,1 \ PT

k,0;
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2. There exists kN such that pn ∈ PT
k,0 \ PT

k,1;
3. There is no kN such that pn ∈ PT

k,0 ∪ PT
k,1;

4. There exists kN such that pn ∈ PT
k,0 ∩ PT

k,1.

We first work in the first case. Using classical logic, it follows from our induction
hypothesis that at least one of the following holds:

– For all mN, there exists u ∈ {0, 1}m such that pn ∗ 〈0〉 ∗ u is in T ;
– For all mN, there exists u ∈ {0, 1}m such that pn ∗ 〈1〉 ∗ u is in T .

If the latter holds, then for m0 := k −̇ (n+1), there exists u ∈ {0, 1}m0 such that
pn ∗ 〈1〉 ∗ u is in T , which contradicts pn ∈ PT

k,1. Thus the former holds. Since
p(n) must be 0 by definition, we have our goal. In the second case, by mimicking
the above argument, we have our goal as well. Next, we work in the third case.
Fix mN

1 and assume that for all u ∈ {0, 1}m1 , p(n + 1) ∗ u is not in T . Then all
branches in T of length n + 1 + m1 (note that there is at least one branch of
this length by induction hypothesis) are incomparable with p(n+1), and hence,
pn ∈ PT

n+1+m1,p(n), which is a contradiction. Thus there exists u ∈ {0, 1}m1

such that p(n + 1) ∗ u is in T . Finally, we show that the fourth case does not
occur. If pn ∈ PT

k,0 ∩ PT
k,1, then for any s ∈ {0, 1}k in T , s is incomparable

with both of pn ∗ 〈0〉 and pn ∗ 〈1〉. Note that k must be greater than n. By
induction hypothesis, there exists u ∈ {0, 1}k−n such that pn ∗ u is in T . This
is a contradiction. ��
Remark 11. We obtain Proposition 9 by applying Theorem 7.(2) to Proposi-
tion 10 with the following observation: In particular cases where Q is LLPO in
Theorem 7.(2), the proof shows that only Π0

1-AC0,0
∨ rather than AC0,ω is enough

for the corresponding argument. On the other hand, one needs QF-AC0,0 and
Σ0

1-DNS0 for deriving the negative translation of QF-AC0,0 (see [10, Lemma
2.1.(3)]).

Remark 12. One can notice that the proof of Proposition 9 and the proof of
Proposition 10 are somewhat similar. Nevertheless, the primitive recursive wit-
nesses for the latter is not obvious from the proof of Proposition 9. On the other
hand, the proof of Proposition 10 heavily uses classical logic for the verification,
and hence, the former is also not an immediate consequence from the latter. This
observation illustrates that our meta-theorems should give rise to new results in
one of the contexts from the results or the proofs in the other context.

At the end of this section, we briefly deal with the relation between the
intermediate value theorem IVT (see [10, Section 3.2] for the formal definition)
and WKL which is mentioned in Sect. 1.

Proposition 13. 1. DICHR is normally reducible to IVT in ̂E-HA
ω
� +

QF-AC0,0, where
DICHR : ∀fN→N∃kN ((k = 0 → f ≥R 0) ∧ (k 
= 0 → f ≤R 0)) .
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2. LLPO is normally reducible to DICHR in ̂E-HA
ω
� + QF-AC0,0.

3. ̂WKL is normally reducible to WKL in ̂E-HA
ω
� + QF-AC0,0.

Proof. (1): Inspect the argument in [19, 6.1.2]. (2): Inspect the argument in [19,
5.2.12]. (3): Inspect the proof of (1) → (3) of [11, Lemma 5]. ��

By Propositions 1, 9, 10, and 13, together with [10, Proposition 3.8], we have
the following:

Corollary 14. WKL is Kleene-primitive-recursive Weihrauch reducible to ÎVT
and vice versa in ̂E-PA

ω
� + QF-AC0,0.

Corollary 15. WKL is normally T0-derivable from IVT and vice versa in
̂E-HA

ω
� + Π0

1-AC0,0
∨ + QF-AC0,0 + Σ0

1-DNS0.

4 Another Possible Consequence from Constructive
Reverse Mathematics

A lot of existing proofs in constructive reverse mathematics show not only prov-
ability but rather normal derivability (see Remark 5). However, this is not always
the case. For example, in the proof of deriving the convex weak König lemma
WKLc from IVT [1, Theorem 3], for a given infinite convex tree T , IVT is first
used to construct an infinite convex subtree T ′ having at most 2 branches for each
height, and then it is used again for taking an infinite path through T ′. Thus,
while the first instance to which one applies IVT is provided primitive recursively
in a given infinite convex tree T , the second instance is not so. In this section, we
characterize this kind of proofs by the notion of Weihrauch reducibility to the
consecutive composition of the finitely many copies of an existence statement,
which has been studied recently in computable analysis (e.g. [7,15,18]).

Definition 16. Let P and Q be existence statements formalized as normal exis-
tential sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f ′(A2(f ′) → ∃g′B2(f ′, g′)) of
̂E-HA

ω
� respectively.

– For a finite-type arithmetic Sω containing E-HAω, P is Gödel-primitive-
recursive Weihrauch reducible to the 2-copies of Q in Sω if there exist closed
terms s, t, and u (of suitable types) in T such that Sω proves

∀f(A1(f) → A2(sf))∧
∀f, g′ (B2(sf, g′) ∧ A1(f) → A2(tf g′)

) ∧
∀f, g′, g′′ (B2(tf g′, g′′) ∧ B2(sf, g′) ∧ A1(f) → B1(f, uf g′ g′′)

)
.

(11)

– For a finite-type arithmetic Sω containing ̂E-HA
ω
�, P is Kleene-primitive-

recursive Weihrauch reducible to the 2-copies of Q in Sω if there exist closed
terms s, t, and u (of suitable types) in T0 such that Sω proves (11).
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– For a finite-type arithmetic Sω containing ̂E-HA
ω
�, P is normally reducible to

the 2-copies of Q in Sω if Sω proves

∀f

⎛

⎜
⎜
⎝

A1(f) →

∃f ′

⎛

⎝A2(f ′) ∧ ∀g′

⎛

⎝
B2(f ′, g′) →
∃f ′′

(
A2(f ′′) ∧ ∀g′′

(
B2(f ′′, g′′) →
∃gB1(f, g)

))
⎞

⎠

⎞

⎠

⎞

⎟
⎟
⎠ .

The versions for k-copies (k = 3, 4, 5, . . . ) are also defined in the same manner.
Note that [10, Definition 2.5] is the case of k = 1.

The proof of [10, Theorem 2.10] allows us to generalize it as follows:

Theorem 17. Let k be a fixed natural number. Let P and Q be existence
statements formalized as normal existential sentences ∀f(A1(f) → ∃gB1(f, g))

and ∀f ′(A2(f ′) → ∃g′B2(f ′, g′) of ̂E-HA
ω
� respectively with ∃-free formulas

A1, A2, B1, and B2. Then the following hold:

1. P is Gödel-primitive-recursive Weihrauch reducible to the k-copies of Q
in E-PAω (resp. E-PAω + QF-AC0,0, E-PAω + Π0

1-AC0,0
, E-PAω + ACω) if

and only if P is normally reducible to the k-copies of Q in E-HAω (resp.
E-HAω+QF-AC0,0+Σ0

1-DNS0, E-HAω+Π0
1-AC0,0+Σ0

2-DNS0, E-HAω+ACω+
mr-DNSω).

2. P is Kleene-primitive-recursive Weihrauch reducible to the k-copies of Q in
̂E-PA

ω
� (resp. ̂E-PA

ω
� + QF-AC0,0, ̂E-PA

ω
� + Π0

1-AC0,0
, ̂E-PA

ω
� + ACω) if

and only if P is normally reducible to the k-copies of Q in ̂E-HA
ω
� (resp.

̂E-HA
ω
� + QF-AC0,0 + Σ0

1-DNS0, ̂E-HA
ω
� + Π0

1-AC0,0 + Σ0
2-DNS0, ̂E-HA

ω
� +

ACω + mr-DNSω).

Applying Theorem 17.(2) for k = 2 to the proof of deriving WKLc from IVT
in [1, Theorem 3], one can obtain a non-trivial result in computable analysis:

Proposition 18. WKLc is Kleene-primitive-recursive Weihrauch reducible to
the 2-copies of IVT in ̂E-PA

ω
� + QF-AC0,0.

Remark 19. The notion of normal derivability does not imply the notion of
normal reducibility to k-copies (verifiably even in a nearly intuitionistic system
containing a choice principle) for any natural number k: if so, by Corollary 15,
we have that WKL is normally reducible to the k-copies of IVT, and hence,
WKL is Kleene-primitive-recursive Weihrauch reducible to the k-copies of IVT
by Theorem 17. However, this is not the case because any computable instance
of IVT has a computable solution while WKL is not so.
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