®

Check for
updates

SNexpression: A Symbolic Calculator
for Symmetric Net Expressions

Lorenzo Capra!, Massimiliano De Pierro?®) | and Giuliana Franceschinis®
! Dip. di Informatica, Universita di Milano, Milan, Italy
lorenzo.capraQunimi.it
2 Dip. di Informatica, Universitd di Torino, Turin, Italy
massimiliano.depierro@unito.it
3 DISIT, Universita del Piemonte Orientale, Alessandria, Ttaly
giuliana.franceschinis@uniupo.it

Abstract. The paper presents SNexpression: a tool for the symbolic
structural analysis of Symmetric Nets (SN). It can operate at a low
level, handling expressions required to compute the structural properties
of interest, but features also a net-based way of interaction allowing to
submit commands referring directly to the net structure avoiding error
prone input of low level expressions. The User Interface implements a
command line interpreter and provides also a multi-page notebook to
keep track of the submitted commands and their result.

1 Introduction

The SNexpression tool has been developed with the aim of providing support to
the structural analysis of Symmetric Nets (SN), a High-Level Petri Net (HLPN)
formalism, without unfolding the net, allowing one to work at symbolic and para-
metric! level. A recently added feature is the possibility of deriving a set of sym-
bolic ordinary differential equations (Symbolic ODE - SODE) from a Stochastic
SN (SSN) model, making it possible an efficient computation of the average
marking of colored tokens into places. A first version of SNexpression was pre-
sented in [6], but significant improvements/extensions have been implemented
since then.

The theoretical work behind the tool has been published in a few papers
defining the language for expressing the structural relations in symbolic form and
the operators to be applied to the SN arc functions to derive several structural
relations [5,7] or to generate a set of SODE from a model satisfying certain
properties [3,4]. The basic idea consists of using a syntax similar to the SN arc
expressions one, to symbolically represent structural relations useful for checking
invariance properties, to deduce model behavioral properties, etc. Each symbolic
structural relation is representative of several structural relations defined on the
model unfolding: the latter can be derived from the former by instantiating it
on specific colors. This approach has advantages: the compact representation,

! The method is parametric in the size of the color classes.

© Springer Nature Switzerland AG 2020
R. Janicki et al. (Eds.): PETRI NETS 2020, LNCS 12152, pp. 381-391, 2020.
https://doi.org/10.1007/978-3-030-51831-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51831-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-51831-8_19

382 L. Capra et al.

the similarity of the languages used to describe the model and that used to
express the structural properties, and to some extent the possibility to apply it
to models with parametric color class size, hence providing results that are valid
for a family of similar models.

1.1 Definitions and Notation

SNs were introduced (with the name Well-Formed Nets) in [8]. It is a formalism,
similar to Colored Petri Nets, featuring a syntax designed to naturally make
symmetries explicit when the modelled system is symmetric (e.g. composed of
several similarly behaving entities). A little SN model is depicted in Fig. 1, it
is a small portion of a Distributed Memory fault tolerance mechanism model
presented in [2]; the picture has been drawn with the GreatSPN GUI [1] and
then (manually) translated into the textual format accepted by SNexpression
(file with .sn extension). The automatic export from the GreatSPN GUI to the
SNexpression net format is a planned future work. This is a natural choice since
GreatSPN has been the first tool to support Symmetric Nets, moreover the GUI
has been designed to allow extensions to the syntax (in SNexpression arc function
terms may have both guards and filters) and handle several formalisms.

Results : RES GreatSPN notation
| . Ay —a,a,b,¢, D
Waiting : A DM_PendRDReq: TASK_VAR EA}’b’aC ,aD 4)6 4)
abrm (alb) [a € Aq]

. domain MBOX = AX AX BXC x D
classA = dmt{1..3}isAq + ds{1..2}isAq

ldEDJ +sm{l..3}isAg

RD_MST f{a-1:0) classN circular nl..4

[n1++ # nal{c, n1++)

SNexpression CLI and .sn notation

(S5-A{1} —a,a,b,c,5-D{4])

a €A
(heck('MP

DMmaster : TASK_VAR DMinput : MBOX

(S-A{1},b, c, S_-D{4})
class A = dmit{1..3} is A1 + t‘is{L.Z} is Ay + sm{1..3} is A3 B\ZB?)LXA{:I%L}] ~2. B,C,D
class D = {wr} is D + {rd} is Dy + {rdko} is D3 + {rdok} is D, classA = {3,2,3}
class B = dmv{1..5} class C'= val{1..3} domain RES= Ax Bx Cx D setN{4}ordered
domain MBOX=Ax Ax Bx Cx D domain TASK_VAR= A x B (e, !n-1)[tn-1 1= n2]

Fig. 1. A fragment of a distributed memory SSN model.

For the sake of space in this section we shall only describe in some detail the
color structure of a SN, assuming that the reader is familiar with PN and HLPN
formalisms and the definition of places, transitions, input, output and inhibitor
arcs, marking. The color structure of a SN is built upon the basic color classes C =
{C;,i=1,...,n} which are finite and disjoint sets?, may be (circularly) ordered
or partitioned into static subclasses Cj ;. Transition and place color domains are
defined as Cartesian products of classes : D = Q C;*,e; > 0,9 =1,...,n (class
C; appears e; times in the product). The color domain e¢d(p) of place p defines the
possible colors (tuples of color elements from cd(p)) of the tokens in its marking;
the color domain cd(t) of transition ¢ defines its possible firing modes: these are

2 In the tool color classes are denoted with a single capital letter: A, B, C, ... and the
Cartesian product of classes is denoted as a comma separated list of classes.

SNexpression: A Symbolic Calculator for Symmetric Net Expressions 383

tuples of color elements, and distinct typed variable names (var(t)) are used to
refer to such elements in any tuple in cd(t).

Let us consider the model in Fig.1: C = {A, B,C, D}, classes A and D are
partitioned into static subclasses; the cd(DMinput) = A2, B, C, D and a tuple in
this place could be {dmtl,dmt2, dmv3,val2, rdok); cd(CheckCMP) = A, B,C
(var(CheckCMP) = {a,b, c}) and one possible firing mode, also called instance,
of this transition is a = dmtl,b = dmv2,c = vall. The enabling conditions of
a transition instance and the effect of its firing depend on the functions on its
input, inhibitor and output arcs. Guards can be associated with transitions, to
constrain the set of valid instances. Transition CheckC M P has several input and
output places and its instances must satisfy predicate a € A;; the function on
the arc from DMinput is (S_A{1}—a, a,b,c, S_D{4}), while the functions on the
arcs connecting it to place D Mmaster are (a,b). The domain of an arc function
linking place p to transition ¢ is cd(t), whereas its codomain is Bag[cd(p)]?. Tts
general form is: Y, ;. Ti[g;], \i € N, where T; is a function-tuple (fi,..., fx)
denoting the Cartesian product of class functions f;. Each class-function f is a
linear function defined on a subset of variables of var(t) of the same type. Let

varc, (t) be the subset of var(t) of type C;, and C; the set of static subclasses
of C;, then f : ¢d(t) — Bag|C;] is so defined:

f= Z Q.U + Z fyk.!vk + Z ﬁq.SLq + 7751

vk €varg, (t) v Evarg, (t) qe{l’m’ﬁi”

where ag, vk, 8q,1 € Z. vy € varg,(t) in this context denotes the projection of
a transition instance on the k" element of type C; in its color domain; symbol
! denotes the successor operator mapping the value of vy to its successor (the
type of vy must be ordered). S;,/S; is a constant function mapping to the
set C; 4/C;. Boolean expressions g; (guards) on var(t) may be associated with
transitions or individual tuples; their terms are standard predicates checking
whether two variables hold the same value, or if a variable “belongs” to a given
static subclass; if g; is false for a given transition instance, the associated tuple
evaluates to the empty-multiset. Scalars in class-functions must be such that no
negative coefficients result from the evaluation of any color satisfying the guard
possibly associated with the corresponding tuple/transition. Figurel contains
examples of arc expressions involving several classes; in the table examples of
functions operating on ordered classes (see Fig.4) are also shown.

The calculus on which SNexpression operates, handles expressions of a lan-
guage (L) introduced in [5], very similar to arc functions but with additional
constraints and a couple of extensions: the constraints are on the basic class
functions (only v;, "v;, S —v;, S;, S; 4 are allowed) and on their coefficients which
cannot be negative, while the extensions are the use of intersection of basic class
functions as tuple elements, and the possibility to use a predicate also as a filter
placed as a prefix in front of a tuple (filtering out the elements not satisfying

3 A multiset on set D is a map D — N. Bag[D] denotes the set of all multisets on D.
If m € Bag[D], and d € D, m[d] is the multiplicity of d in m.

384 L. Capra et al.

the filter predicate from the tuple evaluation). A number of unary and binary
operators are defined on these expressions, which are useful when defining struc-
tural properties on SN models. The SNexpression tool implements a calculus on
L and provides several off-the-shelf formulas to compute interesting structural
properties of SN models.

To the best of our knowledge no other tools implement a general calculus for
structural analysis of HLPNs. Even very advanced tools, e.g. Snoopy [9], take
advantage of symmetry properties in the color structure to efficiently perform
the net unfolding [10], but do not exploit it for structural analysis.

2 Tool Architecture and Functions

The architecture of SNexpression is organized in three layers, depicted in Fig. 2:
the Library for Symbolic Calculus (LSC), the SN management framework (SNF),
and the Command Line Interface (CLI). The LSC is a sort of Computer Algebra
System that handles base-level SN expressions. The SNF middle layer manages
more abstract objects, such as structural relation formulae, directly derived from
a SN definition that may be loaded into the system; it also provides the algo-
rithms needed to automatically derive the SODE for a given SSN model, based
on a manipulation of SSN annotations.

The CLI is a shell surrounding CLI
both the library and the SN frame- | Mrhmmsse fioml s o e o i i
work, through which the user can
operate directly on base-level expres- | SN FRAMEWORK
sions, using the CLI as a sort of Structural | Symbolic
symbolic calculator, or at a higher Helations | obr
level, performing structural analysis
of (S)SN models previously loaded. SYMBOLIC CALCULUS LIBRARY

To help the users operation dur-
ing a session the CLI provides a multi-
page textual notebook where it is pos- Fig. 2. Architecture of SNexpression.
sible to annotate and save formulae
to be submitted, or results, or com-
ments, in other words anything useful to support multi-step complex analysis.
Since the format of the LSC output is pretty similar to the syntax of CLI input,
copy-and-paste from the notebook to the command window and vice-versa may
be conveniently used.

SNexpression is implemented in Java. The LSC is distributed as a standalone
jar file, so that programmers can use it in other projects. Its API is available
at URL: www.di.unito.it/~depierro/SNexpression/libAPI, we plan to make the
LSC soon available as open-source project. At the current release, the CLI and
the SNF are built as a unique executable, but we plan to make also the SNF
accessible through a public API. Since the CLI reads from the standard input, it
might be integrated in other tools. The following sections discuss the functions
of the three layers of the tool architecture in more detail.

www.di.unito.it/~depierro/SNexpression/libAPI

SNexpression: A Symbolic Calculator for Symmetric Net Expressions 385

2.1 The LSC: A Computer Algebra System for SN Expressions

The major functionalities and the design of the LSC are summarized here. The
library implements a (parametric) rewriting system: algebraic rules are used to
rewrite symbolic expressions composed of terms of £, and the associated set of
operators: sum, difference, intersection, composition, transpose. Rewriting stops
when no more rules apply, in which case the resulting term is considered in “nor-
mal form”. Final expressions manipulated by the LSC match a sort of disjunc-
tive normal form, where only SN functions, guards, filters and sum/intersection
operators may occur.

With respect to earlier versions, the LSC currently supports both set- and
bag-expressions (i.e. espressions returning multisets), with the only exception
of composition, which is partially implemented for bag-expressions: its complete
definition is work in progress. The support operator provides a convenient bridge
between bag- and set-expressions.

Thanks to its modular layout and intuitive API, the LSC may also be used
as a standalone component. As a direct consequence of its design, it is possi-
ble to directly build and manipulate objects (terms) at three different levels:
class-functions, guards/filters, and function-tuples. Each level has its own set
of operators, similar among the levels. Guards/Filters (standard predicates),
class-functions, and single function-tuples have a canonical representative, which
coincides with their normal form. There is no canonical form for sums (bags)
of function-tuples: in general, however, equivalence between expressions may be
syntactically checked by using the difference operator.

Library Architecture and API. The library consists of around one hundred Java
classes/interfaces, divided in ten packages. The adopted design has many advan-
tages. Fase of extension/maintenance: changes or updates (e.g., adding new lan-
guage elements) are low-cost. Modular testing/debugging: every single element of
the language can be managed in a uniform way. Efficiency: term normalization
complexity is alleviated by a reduced use of recursion (the normalization times
for many examples, some of which very complex, vary from msec. to sec.).

A code snippet illustrating the several steps needed to create and normalize
a SN expression (the transpose of a tuple composition) is listed in Fig.3. A
(simplified) UML class-diagram describing the top of the LSC type hierarchy, and
its connections to the lower levels, can be found in the tool home page, together
with a small portion of the library’s API concerning simplification methods.

2.2 The Symmetric Nets Management Framework

The SNF implements the method to load a SN description and those to compute
some symbolic structural relations on it, listed in Table 1: some relations are func-
tions on sets, others return multisets. For the structural relations computation
it exploits the functions implemented in the library (difference, transpose, com-
position) on one hand, and the information on the loaded SN structure on the
other hand: the model structure allows to select transition pairs that might be in

386 L. Capra et al.

import wncalculus.color.ColorClass;
import wncalculus.classfunction.x*;
import wncalculus.guard.*;
import wncalculus.tuple.*;
// ...
ColorClass C = new ColorClass("C", true); //ordered class C s.t. |C| > 1
Interval il = new Interval(3,8), // [3,8] (constraint)
i2 = new Interval(2,2); // [2,2]
ColorClass D = new ColorClass("D", new Interval[] {il, i2}); // partitioned
class D = D{1} \cup D{2}
Projection c_1= Projection.builder (1, C), // c_1
c_2= Projection.builder(2, 1, C), // 'c_2
d_1= Projection.builder (1, D); // d_1
SetFunction comp_c_1, comp_d_1, sd2, inter;
comp_c_1 = ProjectionComp.factory(c_1); // S - c_1
comp_d_1 = ProjectionComp.factory(d_1); // S - d_1
sd2 = Subcl.factory(2, D); // constant D{2}
inter = Intersection.factory(comp_d_1,sd2);//D{2} \cap S -di
Domain dom = new Domain(C,C,D); // domain C"2 x D
Guard gl = Membership.build(d_1,sd2,true,dom); //d_1 \in D{2}
Tuple t1 , t2;
tl = new Tuple(dom, c_1, comp_c_1, c_2, d_1); // <c_1,8-c_1,!c_2,d_1>
t2 = new Tuple(null, gil, dom, comp_c_1, c_2 , inter); // <S-c_1,!c_2,(S-d_1
* S_D{2})>[d_1 in D{2}]
TupleComposition tcom = new TupleComposition(tl, t2);
TupleTranspose tcom_trans = new TupleTranspose(tcom);
List<LogicalExpr> result = tcom_trans.simplify();
System.out.println(result);

Fig. 3. Snippet showing creation and simplification of “function-tuple” expressions.

structural conflict or causal connection relation, then the arc functions labeling
the involved arcs are processed through the symbolic calculus implemented by
the LSC. For the mutual exclusion structural relation an ad-hoc computation
algorithm [7] is applied after pre-processing the selected arc expressions through
the library methods.

Finally, the SNF implements the algorithm to derive a set of Symbolic Ordi-
nary Differential Equations from a (partially unfolded) SN [3,4]: it exploits the
library to compute the (multiset) transpose of the arc expressions and to derive
the enabling degree of homogeneous sets of transition instances. It operates with
just one command print_ode after having loaded the SN to be translated. A file
.ode is produced, including the set of SODE (one for each model place) ready to
be solved using Rstudio.

2.3 The Command Line Interface

The CLI is the user interface of the tool: despite its simplicity it provides the
essential commands to access the main functions of the LSC and of the SNF
implementing four kinds of commands: definition of classes or language expres-
sions; application of operators to expressions and simplification; loading a SN
and computing some structural relations on it; derivation of a set of SODE
from a SN, which in turn needs the computation of some structural relations.
The syntax of all commands is described in the manual: Table 1 summarizes the
main types of commands; a few detailed examples are described in Sect. 3. By

SNexpression: A Symbolic Calculator for Symmetric Net Expressions 387

convention the color classes are denoted with capital letters (A, B, C,...) while
small letters, possibly indexed with an integer, denote variables whose type is
the corresponding capital letter class (e.g. a or a-2 of type A). Classes may be
partitioned into static subclasses denoted by the class capital letter followed
by an integer index (e.g. A{1} subclass of A). Classes have finite cardinality,
but it can be defined to be parametric (by default any class has a paramet-
ric cardinality n greater than or equal to two; when a class is partitioned into
static subclasses only one subclass may have parametric cardinality). Domains
are Cartesian products of color classes, if one class appears more than once in a

domain, it is listed once followed by the number of repetitions.

Table 1. Summary of the main commands implemented in the CLI.

Description

‘ CLI syntax (examples)

Defining a class and showing its definition

A (possibly ordered) class
and its subclasses

Show class definition

set C ordered
set M := {10, 3,[4,n]}
class(A)

Symbol definition

Define domain symbol
Define expression symbol
(with domain prefix)
may include a filter

and a guard

Define multiset expression

dom :=A"2,B,C"3
exp:=QA"3<alxS—a2(al4+a2)*xS—a3>
(*: intersection, a-i and S — a_j: basic functions)

@D 2[d.1! = d_2,d.2 in D{1}] < d.2,S —d_1 >
@A"3 < a-1,a-3 > [a-3 in M{2}]

mexp := QC, D mset : 2 < d-1l,c.1 >+ < S_D,c1>

Operators application

support (applies to bag-expressions)
transpose
difference

composition

simplify expression

simplify and fold

<<mset expression>>

expression’

expressionl — expression?2

expressionl.expression2

implementation for bag-expressions is not yet complete
s(e) rewrites an expression into a normalized form

sf(e) merges terms or expressions (# constraints)

Symmetric Nets Framework commands

Nets management commands
Load net
Input/output/inhib. places and arc expr

Symbols for arc (bag-)expressions

load “DistMem.sn”
I(t) / O(t) / H(t)
I(t,p) / O(t,p) / H(t,p)

Structural properties
Conflict

Self-Conflict

Causal Connection

Mutual Exclusion

Added By (set/ multiset)
Removed By (set/multiset)
Derivation of a set of SODE

SC(t1,t2,p) or SC(t1,t2)
SC(t,p) or SC(t)
SCC(t1,t2,p)
SME((t1,t2,p)
AB/ABmset(t, p)
RB/RBmset(t, p)

print_ode

388 L. Capra et al.

The expressions can be interpreted as functions mapping into multisets or
functions mapping on sets, the latter case is the default. The prefix mset: indi-
cates that an expression denotes a function mapping on multisets. The expres-
sions syntax takes the form of a sum of tuples, each tuple may be prefixed with
a filter and suffixed with a guard (both filter and guard take the form of SN
standard predicates). The tuple elements are intersections (x) of basic functions:
projection, complement, successor, constant (whole class or one static subclass).

Operators can be applied to expressions: there are two unary operators, sup-
port and transpose, and two binary operators, difference and composition. The
support operator can be applied to a multiset-expression to obtain the corre-
sponding expression mapping on sets; the transpose operator is available both
for expressions mapping on multisets and for those mapping on sets: the result
of its application is an expression of the same type. The difference can be applied
to any pair of expressions (of the same type) while the composition is completely
implemented for expressions mapping on sets and on a significant subset of mul-
tiset expressions. These operators are the basis for the SN structural analysis
implemented in the SN Management Framework. For instance the structural
conflict between two transitions ¢; and t; sharing an input place p is com-
puted as follows: SC(t1,ta,p) = <<I(t1,p)—O(t1,p)>>".<<I(ta,p) >> +
<< O(t1,p) — I(t1,p) >>'. << H(te,p)>> where I(t,p) and O(t,p) are respec-
tively the expressions on the input and output arcs connecting p and t. This
could be useful to identify the groups of immediate transitions that are poten-
tially in conflict and define how such conflicts should be solved.

To support the user in performing experiments with the tool, the CLI embeds
a multi-page notebook: it is possible to copy-and-paste commands annotated in
the notebook to the command window and then copy-and-paste results from
the command window back in the notebook. When the color classes involved
in the expressions processed by the tool have parametric cardinality, the result
of a computation is not a single expression but a list of expressions, each with
associated a different range of possible values for the classes cardinality: indeed
one of the strong points of the tool is its ability to handle expressions without
necessarily fixing the color classes sizes, so that the obtained result is valid for
a family of models differing only in the size of (some) color classes.

3 Use Cases: Exploiting SNexpression

The goal of this section is to show on a few practical examples some features of
SNexpression. Let us consider the relay race model in Fig. 4 (described in [7]),
representing a set of teams (class C'), each composed of four athletes (ordered
class N, |[N| = 4), competing in a relay race. Some symbolic structural properties
of interest are the causal connection and structural conflict involving transition
Run and the immediate transitions pass, Win and notWin; these properties

SNexpression: A Symbolic Calculator for Symmetric Net Expressions 389

<V\7 inner: C'
9J

) raceEnd

[+ # nol{e, not+)

eam gy, Finish: Team pass Finished: C
(e, m) <C>7l>\m<c,7Ll)

N [+ = ngl(c)
Ready:C (C,n)) (e, n_s)

(c
() : () notWin ¥ (c_y)
[nat+ # nf{c,n) Losers: C
% start First: Team ' 2 2 (O

class N = circular n{1..4} domain Team = C'x N
class C'= {IT,FR,ES,DE, BE,NL}

. Win,
Running :

Fig. 4. An SN model of a relay race.

are useful (among others) for model validation purposes, or to correctly define
immediate transition weights. Let us consider the commands summary in Table 2
1) computes the Table 2. Examples of structural relation expressions.

instances <C, fn/’ 'n//> 1) SCC(pass, Run, Running) = QC, N{c-1,!3n-1,S — n_1)
£ h 2) SCC(pass, Win, Finished) = QC[n-1 =!3n_2](c-1, S_N, S_N)
of pass that may 3y sc(win) = @c(s — c.1)
enable an instance 4) SME(Win,notWin, Winner) = QC, N"2(S_C)
. 5) s(fsce2.fsc3) = QC[n-1 =!3n_2](S — c.1,S_N, S_N)
<C*1’ 'fl,1> of Run: where fscc2 := QC[n-1 =!3n_2](c-1, S_N, S_N), fsc3 := QC(S — c)

through Running; 6) SC(RD-MST, CheckCMP) = ((a_1,S_A, S_B, S_C, S_D{4})
the result shows +{(S-A{1} * S —a-1),a-1,b-1,c-1,S_-D{4}))[a-1 in A{1}]

7) SC(CheckCMP, RD_MST) = (a-2,b-1,c_1)[a-1! = a_2,d_1 in D{4},
that such instances a_lin A{1},a-2 in A{1}] + (a_-1,S_B,S_C)[d_1 in D{4},a_1 in A{1}]

involve an athlete

of the same team

(c_1) with sequence number n’ equal to the predecessor* of n_1, provided that
n” # n_1 (i.e. the team has not run the last section yet). 2) computes the
instances (c,n’,n”) of pass enabling instance (c_1) of Win: the result has a fil-
ter and denotes the instances involving the same team c_1, and the last section
runner (the predecessor of n’’). 3) computes the structural auto-conflicts among
different instances of Win, while the result of 4) shows that Win and notWin
are mutually exclusive: indeed, Winner is input place for notW+in and inhibitor
place (with arc function (S¢)) for Win. In SSNs with immediate transitions it
is useful to check for confusion, i.e., situations where the model is underspecified
(a situation solved by using priorities). In our example, this may arise due to the
fact that different instances of Win are in conflict with each other. There would
be confusion if an instance of pass fired while an instance of Win is enabled: this
could cause the enabling of another instance of Win in conflict with the former.
5) shows how to obtain the confusing instances of pass by composing the results
of 2) and 3): in this case the SNF is not involved.

Other structural relations can be computed on the model in Fig. 1, whose arc
functions are a bit more complex as illustrated by relations 6) and 7) in Table 2.
The resulting expressions have the same domain as the 2"? parameter of SC,
namely A, B, C for 6) and A"2, B,C, D for 7). The terms are pair-wise disjoint:
this enhances readability and interpretation.

1—1

* Since |N| = 4 the predecessor !|~'n of n coincides with the third successor !*n.

390 L. Capra et al.

The tool can be used for other purposes. A recent implementation concerns
the automatic generation of Symbolic ODE from an SSN model (command
print_ode). The technique applies only to models whose underlying stochas-
tic process is density dependent. One condition for an SSN to satisfy such
property is the coverage of places by P-invariants. In [4] an application to a
botnet model has been illustrated (this is one of the examples that can be
downloaded from the tool’s web page). SNexpression can be used to check if
a given P-indexed vector of multiset expressions defines a set of colored P-
invariants, and possibly prove the coverage of all place instances. The expressions
in the P-indexed vector denote functions from the place color domains to the
P-invariant’s domain. An example of P-vector of expressions C, L — Bag[L] is:
pinv[NoConBot] := QC, L mset : (I)[c in C{1} + ¢ in C{2}]; pinv][ConBot] :=
QC, L mset : (I)[c in C{2}]; pinv[InactBot] := QC, L mset : (I}[c in C{3} +
c in C{4}]; pinv[ActBot] := QC,L mset : ([)[c in C{3} + ¢ in C{4}]. In
order to prove that this vector corresponds to a set of P-invariants we need
to show, for each transition ¢, that the sum over all places of the compo-
sitions of P-invariant’s function (pinv[p]) with the difference O(t,p) — I(t,p)
results in the null function. Due to space constraints we show only the result
for transition ConnectBot: s(pinv[NoConDBot].f4 + pinv[ConBot].f5) = null
where f4 := QC, Lmset :< 0¢,0r > —I(ConnectBotNet, NoConnBot) and
5 := O(ConnectBotNet, ConnBot). The same result holds for all transitions,
thus pinv[] is a P-invariant: it represents | L| invariants, indicating that the num-
ber of tokens with second component [€ L is constant, and have the correct
label in C. In the tool web page other P-invariants for this model are available.

4 Conclusions and Installation Instructions

SNexpression implements a symbolic calculus useful for studying the structure
of a Symmetric Net and deriving information on its behavioral properties. It has
also been used to derive a set of SODE from an SSN model for performance
analysis purposes. Several extensions are planned: completing the composition
of bag-expressions, further automation of net structural calculus (e.g., checking
P-invariants or building Extended Conflict Sets), automatizing the SN partial
unfolding procedure which is a preliminary step for the generation of the SODE
from a SN model, providing access to the different software layers with suitable
APIs. Finally, we plan to build a bridge between GreatSPN and SNexpression.

A free version of the tool is available: download the archive SNEx.zip from
the project homepage www.di.unito.it/~depierro/SNexpression, unzip its con-
tent into a folder. The extracted file structure contains the main program
SnexCLI.jar and, in the folder 1ib, the library SNexLib.jar. To launch the
tool in an OS shell run: java -jar <path to SNexCLI.jar> (JRE 1.8 or above
is necessary). At the project’s web page, the user can find a reference manual
and some examples to immediately start using it.

www.di.unito.it/~depierro/SNexpression

SNexpression: A Symbolic Calculator for Symmetric Net Expressions 391

References

10.

Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years
of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and
Reliability Modeling and Evaluation, pp. 227-254. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-30599-8_9

Ballarini, P., Capra, L., Franceschinis, G., De Pierro, M.: Memory fault tolerance
software mechanisms: design and configuration support through SWN models. In:
3rd International Conference on Application of Concurrency to System Design
ACSD 2003, Guimaraes, Portugal, 18-20 June 2003, pp. 111-121 (2003)

Beccuti, M., Capra, L., De Pierro, M., Franceschinis, G., Follia, L., Pernice, S.: A
tool for the automatic derivation of symbolic ODE from symmetric net models. In:
27th IEEE International Symposium MASCOTS 2019, Rennes, France, October
21-25 2019, pp. 36-48 (2019)

Beccuti, M., Capra, L., De Pierro, M., Franceschinis, G., Pernice, S.: Deriving
symbolic ordinary differential equations from stochastic symmetric nets without
unfolding. In: Bakhshi, R., Ballarini, P., Barbot, B., Castel-Taleb, H., Remke, A.
(eds.) EPEW 2018. LNCS, vol. 11178, pp. 30-45. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-02227-3_3

Capra, L., De Pierro, M., Franceschinis, G.: A high level language for structural
relations in well-formed nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
a high level language for structural relations in well-formed nets, vol. 3536, pp.
168-187. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 11
Capra, L., De Pierro, M., Franceschinis, G.: A tool for symbolic manipulation
of arc functions in symmetric net models. In: Proceedings of the 7th International
Conference VALUETOOLS 2013, Torino, Italy, pp. 320-323, ICST. Belgium (2013)
Capra, L., De Pierro, M., Franceschinis, G.: Computing structural properties of
symmetric nets. In: Proceedings of the 15th International Conference on Quanti-
tative Evaluation of Systems, QEST 15, Madrid, ES. IEEE CS (2015)

Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Trans. Comput. 42(11),
1343-1360 (1993)

Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy — a unifying
petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol.
7347, pp. 398-407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31131-4_22

Liu, F., Heiner, M., Yang, M.: An efficient method for unfolding colored Petri nets.
In: Winter Simulation Conference, WSC 2012, Berlin, Germany, 9-12 December
2012, pp. 295:1-295:12 (2012)

https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/978-3-030-02227-3_3
https://doi.org/10.1007/978-3-030-02227-3_3
https://doi.org/10.1007/11494744_11
https://doi.org/10.1007/978-3-642-31131-4_22
https://doi.org/10.1007/978-3-642-31131-4_22

	SNexpression: A Symbolic Calculator for Symmetric Net Expressions*-6pt
	1 Introduction
	1.1 Definitions and Notation

	2 Tool Architecture and Functions
	2.1 The LSC: A Computer Algebra System for SN Expressions
	2.2 The Symmetric Nets Management Framework
	2.3 The Command Line Interface

	3 Use Cases: Exploiting SNexpression
	4 Conclusions and Installation Instructions
	References

