Abstract
Combinatorial problems with NP-hard complexity appear frequently in operational research. Making robust algorithms that solve these combinatorial problems is of interest in operational research. In this article, a binarization mechanism is proposed so that continuous metaheuristics can solve combinatorial problems. The binarization mechanism uses the concept of percentile. This percentile mechanism is applied to the bat algorithm. The NP-hard knapsack problem (MKP) was used to verify our algorithm. Additionally, the binary percentile algorithm was compared with other algorithms that have recently has solved the MKP, observing that the percentile algorithm produces competitive results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barman, S., Kwon, Y.-K.: A novel mutual information-based boolean network inference method from time-series gene expression data. PLoS ONE 12(2), e0171097 (2017)
Crawford, B., Soto, R., Astorga, G., García, J.: Constructive metaheuristics for the set covering problem. In: International Conference on Bioinspired Methods and Their Applications, pp. 88–99. Springer, Cham (2018)
García, J., Crawford, B., Soto, R., Astorga, G.: A percentile transition ranking algorithm applied to binarization of continuous swarm intelligence metaheuristics. In: International Conference on Soft Computing and Data Mining, pp. 3–13. Springer, Cham (2018)
Crawford, B., Soto, R., Monfroy, E., Astorga, G., García, J., Cortes, E.: A meta-optimization approach for covering problems in facility location. In: Workshop on Engineering Applications, pp. 565–578. Springer, Cham (2017)
García, J., Crawford, B., Soto, R., Astorga, G.: A clustering algorithm applied to the binarization of swarm intelligence continuous metaheuristics. Swarm Evol. Comput. 44, 646–664 (2019). http://www.sciencedirect.com/science/article/pii/S221065021730528X
Garcia, J., Crawford, B., Soto, R., Astorga, G.: A percentile transition ranking algorithm applied to knapsack problem. In: Proceedings of the Computational Methods in Systems and Software, pp. 126–138. Springer, Cham (2017)
Astorga, G., Crawford, B., Soto, R., Monfroy, E., García, J., Cortes, E.: A meta-optimization approach to solve the set covering problem. Ingeniería 23(3) (2018)
García, J., Lalla-Ruiz, E., Voß, S., Droguett, E.L.: Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. Int. J. Mach. Learn. Cybern. 1–20 (2020)
García, J., Peña, A.: Robust optimization: concepts and applications. In: Nature-Inspired Methods for Stochastic, Robust and Dynamic Optimization, p. 7 (2018)
García, J., Crawford, B., Soto, R., García, P.: A multi dynamic binary black hole algorithm applied to set covering problem. In: International Conference on Harmony Search Algorithm, pp. 42–51. Springer, Singapore (2017)
García, J., Altimiras, F., Peña, A., Astorga, G., Peredo, O.: A binary cuckoo search big data algorithm applied to large-scale crew scheduling problems. Complexity 2018 (2018)
Crawford, B., Soto, R., Monfroy, E., Astorga, G., García, J., Cortes, E.: A meta-optimization approach to solve the set covering problem. Ingeniería 23(3), 274–288 (2018)
Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., Paredes, F.: Putting continuous metaheuristics to work in binary search spaces. Complexity 2017 (2017)
García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., Peña, A., Altimiras, F., Astorga, G.: A Db-scan binarization algorithm applied to matrix covering problems. Comput. Intell. Neurosci. 2019 (2019)
García, J., Crawford, B., Soto, R., Castro, C., Paredes, F.: A k-means binarization framework applied to multidimensional knapsack problem. Appl. Intell. 48(2), 357–380 (2018)
Zhang, X., Wu, C., Li, J., Wang, X., Yang, Z., Lee, J.-M., Jung, K.-H.: Binary artificial algae algorithm for multidimensional knapsack problems. Appl. Soft Comput. 43, 583–595 (2016)
Haddar, B., Khemakhem, M., Hanafi, S., Wilbaut, C.: A hybrid quantum particle swarm optimization for the multidimensional knapsack problem. Eng. Appl. Artif. Intell. 55, 1–13 (2016)
Meng, T., Pan, Q.-K.: An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem. Appl. Soft Comput. 50, 79–93 (2017)
Liu, J., Wu, C., Cao, J., Wang, X., Teo, K.L.: A binary differential search algorithm for the 0–1 multidimensional knapsack problem. Appl. Math. Model. 40(23–24), 9788–9805 (2016)
García, J., Pope, C., Altimiras, F.: A distributed k-means segmentation algorithm applied to lobesia botrana recognition. Complexity 2017 (2017)
Graells-Garrido, E., García, J.: Visual exploration of urban dynamics using mobile data. In: International Conference on Ubiquitous Computing and Ambient Intelligence, pp. 480–491. Springer, Cham (2015)
Garcia, J., Măntoiu, M.: Localization results for zero order pseudodifferential operators. J. Pseudo-Differ. Oper. Appl. 5(2), 255–276 (2014)
Graells-Garrido, E., Peredo, O., García, J.: Sensing urban patterns with antenna mappings: the case of santiago, chile. Sensors 16(7), 1098 (2016)
Peredo, O.F., García, J.A., Stuven, R., Ortiz, J.M.: Urban dynamic estimation using mobile phone logs and locally varying anisotropy. In: Geostatistics Valencia 2016, pp. 949–964. Springer, Cham (2017)
Pirkul, H.: A heuristic solution procedure for the multiconstraint zero? One knapsack problem. Naval Res. Logist. 34(2), 161–172 (1987)
Kong, X., Gao, L., Ouyang, H., Li, S.: Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm. Comput. Oper. Res. 63, 7–22 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jorquera, L., Villavicencio, G., Causa, L., Lopez, L., Fernández, A. (2020). A Binary Bat Algorithm Applied to Knapsack Problem. In: Silhavy, R. (eds) Artificial Intelligence and Bioinspired Computational Methods. CSOC 2020. Advances in Intelligent Systems and Computing, vol 1225. Springer, Cham. https://doi.org/10.1007/978-3-030-51971-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-51971-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51970-4
Online ISBN: 978-3-030-51971-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)