Skip to main content

A Binary Bat Algorithm Applied to Knapsack Problem

  • Conference paper
  • First Online:
Artificial Intelligence and Bioinspired Computational Methods (CSOC 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1225))

Included in the following conference series:

Abstract

Combinatorial problems with NP-hard complexity appear frequently in operational research. Making robust algorithms that solve these combinatorial problems is of interest in operational research. In this article, a binarization mechanism is proposed so that continuous metaheuristics can solve combinatorial problems. The binarization mechanism uses the concept of percentile. This percentile mechanism is applied to the bat algorithm. The NP-hard knapsack problem (MKP) was used to verify our algorithm. Additionally, the binary percentile algorithm was compared with other algorithms that have recently has solved the MKP, observing that the percentile algorithm produces competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barman, S., Kwon, Y.-K.: A novel mutual information-based boolean network inference method from time-series gene expression data. PLoS ONE 12(2), e0171097 (2017)

    Article  Google Scholar 

  2. Crawford, B., Soto, R., Astorga, G., García, J.: Constructive metaheuristics for the set covering problem. In: International Conference on Bioinspired Methods and Their Applications, pp. 88–99. Springer, Cham (2018)

    Google Scholar 

  3. García, J., Crawford, B., Soto, R., Astorga, G.: A percentile transition ranking algorithm applied to binarization of continuous swarm intelligence metaheuristics. In: International Conference on Soft Computing and Data Mining, pp. 3–13. Springer, Cham (2018)

    Google Scholar 

  4. Crawford, B., Soto, R., Monfroy, E., Astorga, G., García, J., Cortes, E.: A meta-optimization approach for covering problems in facility location. In: Workshop on Engineering Applications, pp. 565–578. Springer, Cham (2017)

    Google Scholar 

  5. García, J., Crawford, B., Soto, R., Astorga, G.: A clustering algorithm applied to the binarization of swarm intelligence continuous metaheuristics. Swarm Evol. Comput. 44, 646–664 (2019). http://www.sciencedirect.com/science/article/pii/S221065021730528X

  6. Garcia, J., Crawford, B., Soto, R., Astorga, G.: A percentile transition ranking algorithm applied to knapsack problem. In: Proceedings of the Computational Methods in Systems and Software, pp. 126–138. Springer, Cham (2017)

    Google Scholar 

  7. Astorga, G., Crawford, B., Soto, R., Monfroy, E., García, J., Cortes, E.: A meta-optimization approach to solve the set covering problem. Ingeniería 23(3) (2018)

    Google Scholar 

  8. García, J., Lalla-Ruiz, E., Voß, S., Droguett, E.L.: Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. Int. J. Mach. Learn. Cybern. 1–20 (2020)

    Google Scholar 

  9. García, J., Peña, A.: Robust optimization: concepts and applications. In: Nature-Inspired Methods for Stochastic, Robust and Dynamic Optimization, p. 7 (2018)

    Google Scholar 

  10. García, J., Crawford, B., Soto, R., García, P.: A multi dynamic binary black hole algorithm applied to set covering problem. In: International Conference on Harmony Search Algorithm, pp. 42–51. Springer, Singapore (2017)

    Google Scholar 

  11. García, J., Altimiras, F., Peña, A., Astorga, G., Peredo, O.: A binary cuckoo search big data algorithm applied to large-scale crew scheduling problems. Complexity 2018 (2018)

    Google Scholar 

  12. Crawford, B., Soto, R., Monfroy, E., Astorga, G., García, J., Cortes, E.: A meta-optimization approach to solve the set covering problem. Ingeniería 23(3), 274–288 (2018)

    Google Scholar 

  13. Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., Paredes, F.: Putting continuous metaheuristics to work in binary search spaces. Complexity 2017 (2017)

    Google Scholar 

  14. García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., Peña, A., Altimiras, F., Astorga, G.: A Db-scan binarization algorithm applied to matrix covering problems. Comput. Intell. Neurosci. 2019 (2019)

    Google Scholar 

  15. García, J., Crawford, B., Soto, R., Castro, C., Paredes, F.: A k-means binarization framework applied to multidimensional knapsack problem. Appl. Intell. 48(2), 357–380 (2018)

    Article  Google Scholar 

  16. Zhang, X., Wu, C., Li, J., Wang, X., Yang, Z., Lee, J.-M., Jung, K.-H.: Binary artificial algae algorithm for multidimensional knapsack problems. Appl. Soft Comput. 43, 583–595 (2016)

    Article  Google Scholar 

  17. Haddar, B., Khemakhem, M., Hanafi, S., Wilbaut, C.: A hybrid quantum particle swarm optimization for the multidimensional knapsack problem. Eng. Appl. Artif. Intell. 55, 1–13 (2016)

    Article  Google Scholar 

  18. Meng, T., Pan, Q.-K.: An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem. Appl. Soft Comput. 50, 79–93 (2017)

    Article  Google Scholar 

  19. Liu, J., Wu, C., Cao, J., Wang, X., Teo, K.L.: A binary differential search algorithm for the 0–1 multidimensional knapsack problem. Appl. Math. Model. 40(23–24), 9788–9805 (2016)

    Article  MathSciNet  Google Scholar 

  20. García, J., Pope, C., Altimiras, F.: A distributed k-means segmentation algorithm applied to lobesia botrana recognition. Complexity 2017 (2017)

    Google Scholar 

  21. Graells-Garrido, E., García, J.: Visual exploration of urban dynamics using mobile data. In: International Conference on Ubiquitous Computing and Ambient Intelligence, pp. 480–491. Springer, Cham (2015)

    Google Scholar 

  22. Garcia, J., Măntoiu, M.: Localization results for zero order pseudodifferential operators. J. Pseudo-Differ. Oper. Appl. 5(2), 255–276 (2014)

    Article  MathSciNet  Google Scholar 

  23. Graells-Garrido, E., Peredo, O., García, J.: Sensing urban patterns with antenna mappings: the case of santiago, chile. Sensors 16(7), 1098 (2016)

    Article  Google Scholar 

  24. Peredo, O.F., García, J.A., Stuven, R., Ortiz, J.M.: Urban dynamic estimation using mobile phone logs and locally varying anisotropy. In: Geostatistics Valencia 2016, pp. 949–964. Springer, Cham (2017)

    Google Scholar 

  25. Pirkul, H.: A heuristic solution procedure for the multiconstraint zero? One knapsack problem. Naval Res. Logist. 34(2), 161–172 (1987)

    Article  MathSciNet  Google Scholar 

  26. Kong, X., Gao, L., Ouyang, H., Li, S.: Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm. Comput. Oper. Res. 63, 7–22 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Jorquera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jorquera, L., Villavicencio, G., Causa, L., Lopez, L., Fernández, A. (2020). A Binary Bat Algorithm Applied to Knapsack Problem. In: Silhavy, R. (eds) Artificial Intelligence and Bioinspired Computational Methods. CSOC 2020. Advances in Intelligent Systems and Computing, vol 1225. Springer, Cham. https://doi.org/10.1007/978-3-030-51971-1_14

Download citation

Publish with us

Policies and ethics