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Abstract. The paper deals with the decentralized control of multivariable sys-

tems with the number of manipulated variables greater than the number of con-

trolled variables. Proposed static compensator ensures automatic creation of in-

put/output pairs for the simple control loops. The compensator provides steady-

state autonomy and unit gain of the controlled system. Steady-state gain matrix 

and vector of the offsets are enough information for the compensator design. La-

boratory example is presented to demonstrate innovative compensator design and 

its application. 
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1 Introduction 

One set-point change and subsequent manipulated variable change acts as a disturbance 

to the other control loops in case of Multi-Input Multi-Output (MIMO) system control. 

Two approaches for controlling MIMO systems are possible - see Fig. 1. 

 

    

Fig. 1. Multivariable controller and decentralized control. 

Multivariable controller calculates the values of all manipulated variables simulta-

neously from all controlled variables and set-points. Special block of the compensator 

can be placed in front of the controlled system to ensure the autonomy of the controlled 

system in case of the decentralized control. Dynamical autonomy of square systems 

means that changing in input ui will only cause a change to the corresponding output 
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yi. It is necessary to know linear dynamical model of the controlled system. Dynamic 

compensator ensuring autonomy in transient states can be complex and not physically 

feasible [1], [2]. Because of this only limited autonomy compensators are designed. For 

the practical applications of decentralized control even without the compensator the 

input/output pairing and control loop tuning can be challenging task. 

The paper deals with the specific type of autonomous control of the systems with 

more inputs than outputs. Steady state autonomy is realized with innovative static com-

pensator - see Fig. 2. 

 

Fig. 2. Decentralized control with static compensator. 

The introduction of new manipulated variables xi assigned to the corresponding con-

trolled variables yi solves the problem of creating the control loops. The new control 

variables (vector x) are recalculated by the static compensator to the system inputs (vec-

tor u). The gain matrix between the new control variables and the system outputs (vec-

tor y) is unit matrix - in steady state y = x. Some disadvantage can be that the use of a 

static compensator may make worse the frequency properties of the closed loop control 

circuit [5], [6]. The proposed static compensator design is a general procedure for the 

application of the multivariable Split Range method [7]. Controlled process gain matrix 

estimation and compensator design was published in [3]. 

In the paper gain matrix estimation in Excel and laboratory application to a process 

with four inputs and three outputs and compact control system AMiNi4DS is presented. 

2 Gain matrix estimation 

Experimental data - steady-state output values for different input combinations are 

needed to estimate the gain matrix of the controlled system. The number of the samples 

must be greater than the number of the inputs. The method is described in detail in [3]. 

Steady-state model of the controlled process with inputs u (u: nu×1) and outputs y 

(y: ny×1) has a form 

 0.= +y Z u z  (1) 

where Z is the gain matrix (Z: ny×nu) and 

z0 is an offset vector (z0: ny×1). 
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The gain matrix Z and the vector of the offsets z0 is estimated by least square matrix 

method from N samples of the steady state input/outputs pairs of the controlled system. 

We arrange the data into a matrix of output values Y (Y: N×ny) and extended matrix of 

input values Ur (Ur: N×nu+1) as follows 
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Solution - the extended Zr gain matrix is obtained as 
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The gain matrix Z is the first nu columns and the vector of the offsets z0 is the last 

column of the extended matrix Zr. 

 

3 Static compensator design 

Compensator together with the original system create new system with the same num-

ber of new inputs x (x: ny×ny) as the outputs y. The gain matrix of the new system is 

unit matrix I (I: ny×ny) 

 y∞=Z.u+z0,   u=K.x,   y∞= x (3) 

In case of the systems, where the number of inputs is greater than the number of 

outputs, there are infinity combinations of inputs leading to the desired outputs. It is 

possible to introduce an additional requirement (preferred, desired vector of inputs uw). 

Compensator calculation is done by minimizing the deviation of the input vector u from 

the preferred input vector uw, with the constraint respecting the relationship between 

inputs and outputs y = Z.u + z0 and the requirement of the unit gain y∞ = I.x 
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where the optional matrix M (M: nu×nu) includes possible weighting requirements for 

the individual inputs or their combinations (it can be chosen as an unit matrix). The 

matrix M and the vector of the preferred inputs uw allows to include additional require-

ments to the control - in addition to the set-points following. 

The minimization of the cost function (5) is described in detail in [3] and the solution 

is 
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Let us use the equality y∞ = x, introduce the notation S (S: nu+ny×nu+ny) for the 

inverse matrix and denote two submatrices R (R: nu×nu) and K (K: nu×ny) as indicated 

in the equation 
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Since we are interested in the solution with respect to the vector u, we will only use 

the submatrices R and K. The static compensator can be written in the matrix form as 

 ( )0. . .T

w= − +u K x z R M u  (7) 

and its block scheme is in Fig. 3. 

 

 

Fig. 3. Static compensator. 

4 Laboratory application 

The calculation of the static compensator in Microsoft Excel and the program imple-

mentation with standard PID controllers in the compact control system AMiNi4DS is 

presented on example of a system with four inputs and three outputs. 15 steady-state 

input/output pairs were measured for the gain matrix estimation. A hardware-based 

simulator of the dynamic systems was used as a controlled system for the application. 

 

4.1 Gain matrix estimation in Excel 

Example of the static compensator calculation in Excel is shows in Fig. 4. The progress 

of the solution is indicated by arrows with the numbers of each calculation step. The 

measured values in the Measured data area are supplemented with a column of ones. 

Auxiliary matrices are calculated in the steps 1 to 3 and calculation of the extended gain 

matrix Zr according to the equation (2) is completed the in the step 4. This matrix con-

tains the process gains Z and the offsets z0. The offsets z0 can be updated at any time 

(process outputs for zero inputs) without having to recalculate the compensator matri-

ces which depends only on the gain matrix Z. 
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Fig. 4. Calculations in Excel. 

Auxiliary matrix S for the calculation of the compensator in the step 5 according 

to the equation (6) is based on the gain matrix Z of the process and the chosen 

weighting matrix M (area Param.). In the last step 6 the compensator matrices K, R 

and the RMT matrix for the implementation of the compensator is calculated. The 

static compensator represents a matrix equation (7) for the recalculation of the vector 

x (3 outputs of the PID controllers) to vector u (4 inputs of the controlled system) 

respecting the system offset z0 and the vector uw of the preferred input vector. 

 

4.2 Application in the control system AMiNi4DS 

An application of the proposed compensator is presented in the compact control sys-

tem AMiNi4DS. This control system supports matrix multiplication and provides also 

digital PID controllers so the control including a static compensator is easy to imple-

ment. 

Static compensator and three PID controllers were realized programmatically using 

the design environment supplied with the control system according to the scheme in 

Fig. 5. The Rm and K matrices used by the compensator were manually filled with the 

values calculated in Excel. The offset vector z0 and the preferred input vector uw can be 

changed from the control panel. 

Controllers and the static compensators are calculated in one process. Part of the 

program code in the form of structured text is shown in Fig. 6. Controller variables of 

the controllers (standard PID module) are directly connected to the analog inputs AI.0-

2 and the set-points to inputs AI.4-6. Units for all inputs and outputs variables of the 

controllers Volts. The outputs of the PID controllers are merged into the vector x. Vec-

tor x is recalculated according to the matrix equation of the static compensator to the 

vector u and split to the individual analog outputs AO.0-3. 
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Fig. 5. Controllers and compensator in AMiNi4DS. 

 

Fig. 6. Code in AMiNi4DS. 

5 Conclusions 

The paper describes design of an innovative simple and practically usable multivariable 

decentralized control system for the processes with higher number of manipulated var-

iables then the controlled variables. The method does not require knowledge of the dy-

namical mathematical model of the controlled system. All necessary information for 

the design can be obtained by simple evaluation of the steady-state experimental data. 

It is shown how to estimate the process gain matrix and how to calculate the matrices 

of the static compensator. 
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// input vector actualization AI[0-7] 

// reading AI0 y1 

AnIn #AI00_0, AI[0,0], 10.000, 0.000, 10.000, 0.000, 10.000  

… 

// reading AI4 w1 

AnIn #AI00_4, AI[4,0], 10.000, 0.000, 10.000, 0.000, 10.000  

… 

// 3 digital PID controllers 

// PID no.1 w:AI.4,y:AI.0,u:x 

PID AI[4,0], AI[0,0], x, Mod1, Par1 

Let xr[0,0]=x 

… 

// static compensator 

MtxSub x3, xr, z0    // x3=xr-z0 

MtxMul u4b, K, x3    // u4b=K*x3=K*(xr-z0) 

MtxMul u4a, Rm, uw    // u4a=Rm*uw 

MtxAdd u, u4a, u4b    // u=u4a+u4b=Rm*uw+K*(xr-z0) 

// output vector actualization and saturation 

// writing u 

AnOut #AO00_0, u[0,0], 10.000, 0.000, 10.000, 0.000, 10.000  

… 
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The use of the static compensator does not eliminate the dynamical coupling of the 

individual control loops, nor does it ensure control stability. The main benefit is a gen-

eral solution for the pairing of the manipulated and controlled variables for individual 

control loops in the case of multivariable systems. In addition, the use of the static 

compensator provides unit gain of each pair, the invariance in steady state and suppres-

sion of the offsets. These features make tuning of individual PID controllers easier. 
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