Skip to main content

Hardware Realization of GMSK System Using Pipelined CORDIC Module on FPGA

  • Conference paper
  • First Online:
Applied Informatics and Cybernetics in Intelligent Systems (CSOC 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1226))

Included in the following conference series:

Abstract

GMSK system is used in many diverse communication systems and which provides compact spectral Bandwidth and high spectral efficiency for next-generation communication systems. In this manuscript, the cost-effective GMSK system is designed using a Pipelined CORDIC model and realized on the FPGA hardware system. The GMSK system mainly has NRZ Encoder-Decoder, Integrator, and differentiator, Gaussian filter, FM modulator and demodulator along with Channel. The FM modulator and demodulator is designed Using a pipelined CORDIC model and Digital Frequency Synthesizer (DFS). The 8-bit Pipelined CORDIC model is used for In-phase and Quadrature-Phase (IQ) generation along with DFS for arbitrary waveform generation for the formation of IQ modulation. The complete GMSK system is designed using Verilog-HDL on Xilinx ISE 14.7 environment and prototyped on FPGA. The GMSK system implementation results are compared with existing approaches with better improvement in hardware constraints like chip area (Slices) and operating frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, R.H.-H., Chern, S.-J., Shiu, G.-C., Lee, M.-T.: Space-time coded GMSK for wireless communication. In: 2005 International Symposium on Intelligent Signal Processing and Communication Systems, pp. 413–416. IEEE (2005)

    Google Scholar 

  2. Bauer, I., Gordan, S., Borivoj, M.: Modeling of GMSK communication systems for educational purposes. In: Proceedings ELMAR 2006, pp. 267–272. IEEE (2006)

    Google Scholar 

  3. Hietala, A.W.: A quad-band 8PSK/GMSK polar transceiver. IEEE J. Solid-State Circ. 41(5), 1133–1141 (2006)

    Article  Google Scholar 

  4. Puengnim, A., Thomas, N., Tourneret, J-Y., Guillon, H.: Classification of GMSK signals with different bandwidths. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2013–2016. IEEE (2008)

    Google Scholar 

  5. Souissi, M.G., Grati, K., Ghazel, A., Kouki, A.: Software efficient implementation of GMSK modem for an automatic identification system transceiver. In: 2008 Canadian Conference on Electrical and Computer Engineering, pp. 000601–000606. IEEE (2008)

    Google Scholar 

  6. Gudovskiy, D.A., Chu, L., Lee, S.: A novel nondata-aided synchronization algorithm for MSK-type-modulated signals. IEEE Commun. Lett. 19(9), 1552–1555 (2015)

    Article  Google Scholar 

  7. Sen, D., Yang, Y., Cui, P., Guo, B.: Research on separability of GMSK mixed signals based on modulation parameters. In: 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication, pp. 175–177. IEEE (2015)

    Google Scholar 

  8. Babu, K.M.N., Vinaymurthi, K.K.: GMSK modulator for GSM system, an economical implementation on FPGA. In: 2011 International Conference on Communications and Signal Processing, pp. 208–212. IEEE (2011)

    Google Scholar 

  9. Lee, J.F.M., Montenegro, J.F.P., Morales, C.M., Parrado, A.L., Gutiérrez, J.J.G.: Implementation of a GMSK communication system on FPGA. In: 2011 IEEE Second Latin American Symposium on Circuits and Systems (LASCAS), pp. 1–4. IEEE (2011)

    Google Scholar 

  10. Jhaidri, M.A., Laot, C., Thomas, A.: Nonlinear analysis of GMSK carrier phase recovery loop. In: 2016 International Symposium on Signal, Image, Video and Communications (ISIVC), pp. 230–235. IEEE (2016)

    Google Scholar 

  11. Udawant, S.R., Magar, S.S.: Digital image processing by using GMSK. In: 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 695–698. IEEE (2016)

    Google Scholar 

  12. Luo, J., Chai, S., Wang, Y., Hu, Z., Zhang, B., Cui, L.: A maritime radio communication system based on GNU Radio_HackRF platform and GMSK modulation. In: 2018 IEEE 18th International Conference on Communication Technology (ICCT), pp. 711–715. IEEE (2018)

    Google Scholar 

  13. Zaidi, Y., van Zyl, R.R., Fitz-Coy, N.G.: A GMSK VHF-uplink/UHF-downlink transceiver for the CubeSat missions. Ceas Space J. 10(3), 453–467 (2018). https://doi.org/10.1007/s12567-018-0217-5

    Article  Google Scholar 

  14. Ge, L., Li, X., Wang, X.: Design of GMSK frequency hopping modulation scheme based on FPGA. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS) 47(1), 28–38 (2018)

    Google Scholar 

  15. Zhu, H., Xu, H., Zhang, B., Xu, M., Zhu, S.: Design of efficient LDPC coded non-recursive CPE based GMSK system for space communications. IEEE Access 7, 70654–70661 (2019)

    Article  Google Scholar 

  16. Li, S., Chen, L., Zhao, Y.: GMSK viterbi demodulation for satellite-AIS. In: 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), pp. 327–331. IEEE (2018)

    Google Scholar 

  17. Evangelista, G., Olaya, C., Rodríguez, E.: Fully-pipelined CORDIC-based FPGA realization for a 3-DOF hexapod-leg inverse kinematics calculation. In: 2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA), pp. 237–242. IEEE (2018)

    Google Scholar 

  18. Meenpal, T.: Efficient MUX based CORDIC on FPGA for signal processing application. In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–6. IEEE (2019)

    Google Scholar 

  19. Li, D., Zhao, D.: High-throughput low-power area-efficient outphasing modulator based on unrolled and pipelined radix-2 CORDIC. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(2), 480–491 (2019)

    Article  Google Scholar 

  20. Lakshmi, B., Dhar, A.S.: Low latency pipelined CORDIC-like rotator architecture. Int. J. Electron. 104(1), 64–78 (2017)

    Article  Google Scholar 

  21. Changela, A., Zaveri, M., Lakhlani, A.: FPGA implementation of asynchronous mousetrap pipelined radix-2 cordic algorithm. In: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), pp. 252–258. IEEE (2018)

    Google Scholar 

  22. Ramadoss, R., Kermani, M.M., Azarderakhsh, R.: Reliable hardware architectures of the CORDIC algorithm with a fixed angle of rotations. IEEE Trans. Circ. Syst. II: Express Briefs 64(8), 972–976 (2016)

    Google Scholar 

  23. Kajur, R.R., Tejas, S.P., Prasad, K.V.: Efficient hardware design of single carrier GSMK modulator and demodulator for next generation communication using flexible and optimal sub-modules. Int. J. New Innov. Eng. Technol. J. 8(2), 10–23 (2018)

    Google Scholar 

  24. Adarsh, M.A., Adithya, K., Nimbal, A.: FPGA implementation of space-based AIS. In: 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1–5. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renuka Kajur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kajur, R., Prasad, K.V. (2020). Hardware Realization of GMSK System Using Pipelined CORDIC Module on FPGA. In: Silhavy, R. (eds) Applied Informatics and Cybernetics in Intelligent Systems. CSOC 2020. Advances in Intelligent Systems and Computing, vol 1226. Springer, Cham. https://doi.org/10.1007/978-3-030-51974-2_3

Download citation

Publish with us

Policies and ethics