Skip to main content

Comparison of Neural Network Models Applied to Human Recognition

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1221))

Included in the following conference series:

  • 630 Accesses

Abstract

In this paper a comparison among conventional Artificial Neural Networks (ANN), Ensemble Neural Networks (ENN) and Modular Granular Neural Networks (MGNNs) is performed. This comparison is performed use 10-fold cross-validation using from 1 to 12 images for the training phase. Some parameters of neural networks are randomly established such as: the number of sub modules (for ensemble and modular granular neural networks), the number of neurons of two hidden layers for each sub module and learning algorithm. A benchmark database is used to observe the neural networks performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abiyev, R., Altunkaya, K.: Personal Iris recognition using neural network. Department of Computer Engineering, Near East University, Lefkosa, North Cyprus (2008)

    Google Scholar 

  2. Azamm, F.: Biologically inspired modular neural networks. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, Ph.D. thesis (2000)

    Google Scholar 

  3. Bakshe, R.C., Patil, A.M.: Hand geometry as a biometric for human identification. Int. J. Sci. Res. 4(1), 2744–2748 (2015)

    Google Scholar 

  4. Bargiela, A., Pedrycz, W.: The roots of granular computing. In: IEEE International Conference on Granular Computing (GrC), pp. 806–809 (2006)

    Google Scholar 

  5. Ch’ng, S.I., Seng, K.P., Ang, L.: Modular dynamic RBF neural network for face recognition. In: 2012 IEEE Conference on Open Systems (ICOS), pp. 1–6 (2012)

    Google Scholar 

  6. Chen, S.H., Jakeman, A.J., Norton, J.P.: Artificial intelligence techniques: an introduction to their use for modelling environmental systems. Math. Comput. Simul. 78, 379–400 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Database of Human Iris. Institute of Automation of Chinese Academy of Sciences (CASIA). http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp

  8. Dilek, S., Çakır, H., Aydın, M.: Applications of artificial intelligence techniques to combating cyber crimes: a review. Int. J. Artif. Intell. Appl. (IJAIA) 6(1), 21–39 (2015)

    Google Scholar 

  9. Khan, A., Bandopadhyaya, T., Sharma, S.: Classification of stocks using self organizing map. Int. J. Soft Comput. Appl. 4, 19–24 (2009)

    Google Scholar 

  10. Masek, L., Kovesi, P.: MATLAB Source Code for a Biometric Identification System Based on Iris Patterns. The School of Computer Science and Software Engineering, The University of Western Australia (2003)

    Google Scholar 

  11. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems, 1st edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  12. Mohamad, M., Mohd Saman, M.Y.: Comparison of diverse ensemble neural network for large data classification. Int. J. Adv. Soft Comput. 7(3), 67–83 (2015)

    Google Scholar 

  13. Moreno, B., Sanchez, A., Velez, J.F.: On the use of outer ear images for personal identification in security applications. In: IEEE 33rd Annual International Carnahan Conference on Security Technology, pp. 469–476 (1999)

    Google Scholar 

  14. Pannu, A.: Artificial intelligence and its application in different areas. Int. J. Eng. Innov. Technol. (IJEIT) 4(10), 79–84 (2015)

    Google Scholar 

  15. Patil, A.M., Patil, D.S., Patil, P.S.: Iris recognition using gray level co-occurrence matrix and Hausdorff dimension. Int. J. Comput. Appl. 133(8), 29–34 (2016)

    Google Scholar 

  16. Pintea, C.M., Matei, O., Ramadan, R.A., Pavone, M., Niazi, M., Azar, A.T.: A fuzzy approach of sensitivity for multiple colonies on ant colony optimization. In: Soft Computing Applications, SOFA 2016. Advances in Intelligent Systems and Computing, vol. 634. Springer (2016)

    Google Scholar 

  17. Pulido, M., Castillo, O., Melin, P.: Genetic optimization of ensemble neural networks for complex time series prediction of the Mexican exchange. Int. J. Innov. Comput. Inf. Control 9(10), 4151–4166 (2013)

    Google Scholar 

  18. Qian, Y., Zhang, H., Li, F., Hu, Q., Liang, J.: Set-based granular computing: a lattice model. Int. J. Approximate Reasoning 55, 834–852 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Ruano, M.G., Ruano, A.E.: On the use of artificial neural networks for biomedical applications. In: Soft Computing Applications. Advances in Intelligent Systems and Computing, vol. 195. Springer

    Google Scholar 

  20. Sánchez, D., Melin, P.: Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng. Appl. Artif. Intell. 27, 41–56 (2014)

    Google Scholar 

  21. Sánchez, D., Melin, P., Castillo, O.: Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng. Appl. Artif. Intell. 64, 172–186 (2017)

    Google Scholar 

  22. Sánchez, D., Melin, P., Castillo, O.: A grey wolf optimizer for modular granular neural networks for human recognition, vol. 2017, pp. 4180510:1–4180510:26 (2017)

    Google Scholar 

  23. Sankhe, A., Pawask, A., Mohite, R., Zagade, S.: Biometric identification system: a finger geometry and palm print based approach. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 5(3), 1756–1763 (2016)

    Google Scholar 

  24. Solanki, K., Pittalia, P.: Review of face recognition techniques. Int. J. Comput. Appl. 133(12), 20–24 (2016)

    Google Scholar 

  25. Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. In: IEEE Congress on Evolutionary Computation 2013, Cancun, Mexico, pp. 1068–1074 (2013)

    Google Scholar 

  26. Valdez, F., Melin, P., Castillo, O.: A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation. Expert Syst. Appl. 41(14), 6459–6466 (2014)

    Google Scholar 

  27. Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: FUZZ-IEEE 2009, pp. 2114–2119 (2009)

    Google Scholar 

  28. Yao, Y.Y.: On modeling data mining with granular computing. In: 25th International Computer Software and Applications Conference (COMPSAC), pp. 638–649 (2001)

    Google Scholar 

  29. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in hu-man reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez, D., Melin, P., Castillo, O. (2021). Comparison of Neural Network Models Applied to Human Recognition. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-51992-6_11

Download citation

Publish with us

Policies and ethics