Abstract
Optimal dispatching of the thermal power plants which produce simultaneously heat and electricity (the cogeneration units) represents an important economical issue in power systems. To approach this problem it is necessary to establish the parameters for fuel-cost function as accurate as possible, these parameters showing the link between production costs of one unit, electrical power and amount of heat produced. In this paper, an enhanced crow search (ECS) algorithm is applied to estimate the fuel-cost parameters of the thermal units which produce only heat or operate in cogeneration mode. The ECS algorithm has the same framework as the original crow search (CS) algorithm, but it introduces a different relation to modify the solutions from the search space. The effectiveness of the ECS and CS is verified on a three-unit thermal system. The results obtained by the ECS and CS algorithms are compared with those obtained by other well-known algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nguyen, T.T., Vo, D.N., Dinh, B.H.: Cuckoo search algorithm for combined heat and power economic dispatch. Electr. Power Energy Syst. 81, 204–214 (2016)
Vasebi, A., Fesanghary, M., Bathaee, S.M.T.: Combined heat and power economic dispatch by harmony search algorithm. Electr. Power Energy Syst. 29, 713–719 (2007)
Kádár, P.: Application of optimization techniques in the power system control. Acta Polytechnica Hungarica 10(5), 221–236 (2013)
Abbas, G., Gu, J., Farooq, U., Raza, A., Asad, M.U., El-Hawary, M.: Solution of an economic dispatch problem through particle swarm optimization: a detailed survey–part I. IEEE Access 5, 15105–15141 (2017)
Abbas, G., Gu, J., Farooq, U., Raza, A., Asad, M.U., El-Hawary, M.: Solution of an economic dispatch problem through particle swarm optimization: a detailed survey–Part II. IEEE Access 5(1), 24426–24445 (2017)
Dai, Y., Chen, L., et al.: Integrated dispatch model for combined heat and power plant with phase-change thermal energy storage considering heat transfer process. IEEE Trans. Sustain. Energy 9(3), 1234–1243 (2018)
El-Naggar, K.M., AlRashidi, M.R., Al-Othman, A.K.: Estimating the input-output parameters of thermal power plants using PSO. Energy Convers. Manage. 50, 1767–1772 (2009)
Alrashidi, M.R., El-Naggar, K.M., Al-Othman, A.K.: Particle swarm optimization based approach for estimating the fuel-cost function parameters of thermal power plants with valve loading effects. Electr. Power Compon. Syst. 37, 1219–1230 (2009)
Sonmez, Y.: Estimation of fuel cost curve parameters for thermal power plants using the ABC algorithm. Turk. J. Electr. Eng. Comput. Sci. 21, 1827–1841 (2013)
Durai, S., Subramanian, S., Ganesan, S.: Improved parameters for economic dispatch problems by teaching learning optimization. Electr. Power Energy Syst. 67, 11–24 (2015)
AlRashidi, M.R., El-Naggar, K.M., AlHajri, M.F.: Convex and non-convex heat curve parameters estimation using Cuckoo search. Arab. J. Sci. Eng. 40, 873–882 (2015)
Vanithasri, V., Balamurugan, R., Lakshminarasimman, L.: Modified radial movement optimization (MRMO) technique for estimating the parameters of fuel cost function in thermal power plants. Eng. Sci. Technol. Int. J. 19(4), 2035–2042 (2016)
Sayah, S., Hamouda, A.: Efficient method for estimation of smooth and nonsmooth fuel cost curves for thermal power plants. Int. Trans. Electr. Energy Syst. 28(3), 1–14 (2017)
Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 169, 1–12 (2016)
Mohammadi, F., Abdi, H.: A modified crow search algorithm (MCSA) for solving economic loaddispatch problem. Appl. Soft Comput. 71, 51–65 (2018)
Abdelaziz, A.Y., Fathy, A.: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Eng. Sci. Technol. Int. J. 20, 391–402 (2017)
Allaoui, M., Ahiod, B., El Yafrani, M.: A hybrid crow search algorithm for solving the DNA fragment assembly problem. Expert Syst. Appl. 102, 44–56 (2018)
Oliva, D., Hinojosa, S., Cuevas, E., Pajares, G., Avalos, O., Gálvez, J.: Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst. Appl. 79, 164–180 (2017)
Gao, W.-F., Liu, S.-Y.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39, 687–697 (2012)
Gao, W.-F., Liu, S.-Y., Huang, L.L.: A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Secui, DC., Dzitac, S., Bunda, SI. (2021). The Enhanced Crow Search Algorithm for Fuel-Cost Function Parameters Assessment of the Cogeneration Units from Thermal Power Plants. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-51992-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-51992-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51991-9
Online ISBN: 978-3-030-51992-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)