Skip to main content

Flexible Fuzzy Numbers for Likert Scale-Based Evaluations

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1221))

Included in the following conference series:

Abstract

In this paper, a novel class of fuzzy numbers called the flexible fuzzy numbers is introduced and its application in Likert scale-based evaluations is presented. We point out that depending on its shape parameter, the membership function of a flexible fuzzy number can take various forms. Next, we show that if the shape parameter is fixed, then the set of flexible fuzzy numbers is closed under the multiplication by scalar, fuzzy addition and weighted average operations. Then, as a generalization of the flexible fuzzy numbers we introduce the extended flexible fuzzy numbers which can have different left hand side and right hand side shape parameters. Here, we introduce an important asymptotic property of the extended flexible fuzzy numbers that allows us to perform approximate fuzzy arithmetic operations over them. The pliancy of these fuzzy numbers make them well suited to multi-dimensional Likert scale-based fuzzy evaluations in many areas of management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herrera, F., Herrera-Viedma, E.: Choice functions and mechanisms for linguistic preference relations. Eur. J. Oper. Res. 120(1), 144–161 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Herrera, F., López, E., Mendana, C., Rodríguez, M.A.: Solving an assignment-selection problem with verbal information and using genetic algorithms1. Eur. J. Oper. Res. 119(2), 326–337 (1999)

    MATH  Google Scholar 

  3. Kacprzyk, J.: Towards ‘human-consistent’ multistage decision making and control models using fuzzy sets and fuzzy logic. Fuzzy Sets Syst. 18(3), 299–314 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Andayani, S., Hartati, S., Wardoyo, R., Mardapi, D.: Decision-making model for student assessment by unifying numerical and linguistic data. Int. J. Electr. Comput. Eng. 7(1), 363 (2017)

    Google Scholar 

  5. Carrasco, R.A., Villar, P., Hornos, M.J., Herrera-Viedma, E.: A linguistic multi-criteria decision making model applied to the integration of education questionnaires. Int. J. Comput. Intell. Syst. 4(5), 946–959 (2011)

    Google Scholar 

  6. Chen, C.T.: Applying linguistic decision-making method to deal with service quality evaluation problems. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 9(supp01), 103–114 (2001)

    MATH  Google Scholar 

  7. Gil, M.Á., González-Rodríguez, G.: Fuzzy vs. likert scale in statistics. In: Combining Experimentation and Theory, pp. 407–420. Springer, Heidelberg (2012)

    Google Scholar 

  8. Lubiano, M.A., de Sáa, S.D.L.R., Montenegro, M., Sinova, B., Gil, M.Á.: Descriptive analysis of responses to items in questionnaires. Why not using a fuzzy rating scale? Inf. Sci. 360, 131–148 (2016)

    Google Scholar 

  9. Tóth, Z.E., Surman, V., Árva, G.: Challenges in course evaluations at Budapest University of Technology and Economics. In: Bekirogullari, Z., Minas, M.Y., Thambusamy, R.X. (eds.) 8th ICEEPSY 2017 The International Conference on Education and Educational Psychology, pp. 629–641 (2017)

    Google Scholar 

  10. Kuzmanovic, M., Savic, G., Popovic, M., Martic, M.: A new approach to evaluation of university teaching considering heterogeneity of students’ preferences. High. Educ. 66(2), 153–171 (2013)

    Google Scholar 

  11. Lin, H.T.: Fuzzy application in service quality analysis: an empirical study. Exp. Syst. Appl. 37(1), 517–526 (2010)

    Google Scholar 

  12. Deng, W.J.: Fuzzy importance-performance analysis for determining critical service attributes. Int. J. Serv. Ind. Manag. 19(2), 252–270 (2008)

    Google Scholar 

  13. Lupo, T.: A fuzzy servqual based method for reliable measurements of education quality in Italian higher education area. Exp. Syst. Appl. 40(17), 7096–7110 (2013)

    Google Scholar 

  14. Lupo, T.: A fuzzy framework to evaluate service quality in the healthcare industry: an empirical case of public hospital service evaluation in Sicily. Appl. Soft Comput. 40, 468–478 (2016)

    Google Scholar 

  15. Li, Q.: A novel Likert scale based on fuzzy sets theory. Exp. Syst. Appl. 40(5), 1609–1618 (2013)

    Google Scholar 

  16. Quirós, P., Alonso, J.M., Pancho, D.P.: Descriptive and comparative analysis of human perceptions expressed through fuzzy rating scale-based questionnaires. Int. J. Comput. Intell. Syst. 9(3), 450–467 (2016)

    Google Scholar 

  17. Hesketh, B., Pryor, R., Gleitzman, M., Hesketh, T.: Practical applications and psychometric evaluation of a computerised fuzzy graphic rating scale. Adv. Psychol. 56, 425–454 (1988). Elsevier

    MathSciNet  Google Scholar 

  18. Gil, M.Á., Lubiano, M.A., De Sáa, S.D.L.R., Sinova, B.: Analyzing data from a fuzzy rating scale-based questionnaire: a case study. Psicothema 27(2), 182–192 (2015)

    Google Scholar 

  19. Jónás, T., Tóth, Z.E., Árva, G.: Applying a fuzzy questionnaire in a peer review process. Total Qual. Manag. Bus. Excellence 29(9–10), 1228–1245 (2018)

    Google Scholar 

  20. Stoklasa, J., Talášek, T., Luukka, P.: Fuzzified likert scales in group multiple-criteria evaluation. In: Collan, M., Kacprzyk, J. (eds.) Soft Computing Applications for Group Decision-making and Consensus Modeling, pp. 165–185. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60207-3_11

    Chapter  Google Scholar 

  21. Talásek, T., Stoklasa, J.: A numerical investigation of the performance of distance and similarity measures in linguistic approximation under different linguistic scales. Multiple-Valued Logic Soft Comput. 29, 485–503 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Frühwirth-Schnatter, S.: On statistical inference for fuzzy data with applications to descriptive statistics. Fuzzy Sets Syst. 50(2), 143–165 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Amini, S., Jochem, R.: A conceptual model based on the fuzzy set theory to measure and evaluate the performance of service processes. In: 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW), pp. 122–131. IEEE (2011)

    Google Scholar 

  24. Dombi, J.: Pliant arithmetics and pliant arithmetic operations. Acta Polytechnica Hungarica 6(5), 19–49 (2009)

    Google Scholar 

  25. Dombi, J.: On a certain type of unary operators. In: 2012 IEEE International Conference on Fuzzy Systems, pp. 1–7 (2012)

    Google Scholar 

  26. Dombi, J., Jónás, T., Tóth, Z.E.: The epsilon probability distribution and its application in reliability theory. Acta Polytechnica Hungarica 15(1), 197–216 (2018)

    Google Scholar 

  27. Dombi, J., Jónás, T.: Approximations to the normal probability distribution function using operators of continuous-valued logic. Acta Cybernetica 23(3), 829–852 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Bede, B.: Fuzzy Numbers, pp. 51–64. Springer, Heidelberg (2013)

    Google Scholar 

  29. Zimmermann, H.J.: Fuzzy Set Theory-and Its Applications. Springer, Heidelberg (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Jónás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dombi, J., Jónás, T. (2021). Flexible Fuzzy Numbers for Likert Scale-Based Evaluations. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-51992-6_8

Download citation

Publish with us

Policies and ethics