Abstract
This paper is concerned with finding near optimal parameters for the inventory optimization model on large dataset. It is shown that our proposed method allows for very good model parameter estimation with great reduction in computation time. Model developed in cooperation with K2 atmitec s.r.o. company has four input parameters which must be set before the run. These parameters are estimated through computationally complex simulations by hyperparameter search. Since it is impossible to make grid search of the optimal parameters for all the input time series, it is necessary to approximate the parameters settings. This approximation is done through similarity search and computation of optimal parameters on the most central objects. Additionally, parameter estimation is improved by the clustering of time series and the results are upgraded by the new estimations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Axsäter, S.: Inventory Control (International Series in Operations Research & Management Science). Springer (2015)
Chen, W.C., Ostrouchov, G., Schmidt, D., Patel, P., Yu, H.: pbdMPI: Programming with big data – interface to MPI (2012). R Package, https://cran.r-project.org/package=pbdMPI
Choi, T.M. (ed.): Handbook of EOQ Inventory Problems: Stochastic and Deterministic Models and Applications (International Series in Operations Research & Management Science). Springer (2013)
Das, G., Gunopulos, D., Mannila, H.: Finding similar time series. In: Komorowski, J., Zytkow, J. (eds.) Principles of Data Mining and Knowledge Discovery, pp. 88–100. Springer, Heidelberg (1997)
Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recogn. 44(9), 2231 – 2240 (2011). https://doi.org/10.1016/j.patcog.2010.09.022. http://www.sciencedirect.com/science/article/pii/S003132031000484X. Computer Analysis of Images and Patterns
Kassambara, A., Mundt, F.: factoextra: Extract and Visualize the Results of Multivariate Data Analyses (2017). https://CRAN.R-project.org/package=factoextra. R package version 1.0.5
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: cluster: Cluster Analysis Basics and Extensions (2018). R package version 2.0.7-1 — For new features, see the ‘Changelog’ file (in the package source)
Martinovič, J., Snášel, V., Dvorský, J., Dráždilová, P.: Search in documents based on topical development. In: Snášel, V., Szczepaniak, P.S., Abraham, A., Kacprzyk, J. (eds.) Advances in Intelligent Web Mastering - 2, pp. 155–166. Springer, Heidelberg (2010)
Martinovic, T.: Chaos01: 0-1 Test for Chaos (2016). https://CRAN.R-project.org/package=Chaos01. R package version 1.1.0
Martinovič, T., Janurová, K., Slaninová, K., Martinovič, J.: Automated application of inventory optimization. In: Saeed, K., Homenda, W. (eds.) Computer Information Systems and Industrial Management, pp. 230–239. Springer International Publishing, Cham (2016)
Martinovič, T., Zitzlsberger, G.: Highly scalable algorithm for computation of recurrence quantitative analysis. J. Supercomput. (2018). https://doi.org/10.1007/s11227-018-2350-5
Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007). https://doi.org/10.1016/j.physrep.2006.11.001. http://www.sciencedirect.com/science/article/pii/S0370157306004066
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.R-project.org/
Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7. http://www.sciencedirect.com/science/article/pii/0377042787901257
Rousseeuw, P.J., Kaufman, L.: Finding groups in data. Wiley Online Library Hoboken (1990)
Russell, R., Taylor, B.: Operations and Supply Chain Management. Wiley (2016). https://books.google.cz/books?id=sj00DQEACAAJ
Takens, F.: Detecting strange attractors in turbulence, pp. 366–381. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091924. https://doi.org/10.1007/BFb0091924
Webber, C.L., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994). http://jap.physiology.org/content/76/2/965
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2009). http://ggplot2.org
Wickham, H.: tidyverse: Easily Install and Load the ‘Tidyverse’ (2017). https://CRAN.R-project.org/package=tidyverse. R package version 1.2.1
Wickham, H., Francois, R., Henry, L., Müller, K.: dplyr: a Grammar of Data Manipulation (2017). https://CRAN.R-project.org/package=dplyr. R package version 0.7.4
Witt, C.: Clustering Recurrence Plots. Master’s thesis, Humboldt-Universität zu Berlin, Germany (2016)
Zbilut, J.P., Webber, C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3), 199–203 (1992). https://doi.org/10.1016/0375-9601(92)90426-M. http://www.sciencedirect.com/science/article/pii/037596019290426M
Acknowledgements
This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project “IT4Innovations excellence in science - LQ1602” and by the “IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project IT4Innovations National Supercomputing Center - LM2015070” and partially supported by the SGC grant No. SP2018/173 “Dynamic systems problems and their implementation on HPC", VŠB - Technical University of Ostrava, Czech Republic.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Martinovič, T., Janurová, K., Martinovič, J., Slaninová, K. (2021). Inventory Optimization Model Parameter Search Speed-Up Through Similarity Reduction. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-51992-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-51992-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51991-9
Online ISBN: 978-3-030-51992-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)