Abstract
The future smart grid has to be operated by rather small and hardly flexible energy resources. Such duty comprises different planning tasks. Virtual power plants powered by multi-agent control are seen as a promising aggregation scheme for coping with problem size and for gaining flexibility for distributed load planning. If agents are allowed to freely include local preferences into decision making the overall solution quality deteriorates significantly if no control mechanism is installed. We scrutinized this deterioration and propose an approach based on controlled self-organization to achieve an overall maximization of integrated local preferences while at the same time preserving global solution quality for grid control as much as possible. Some first results prove the applicability of the general approach. Further research directions and questions for future work are derived from these first results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Awad, A., German, R.: Self-organizing smart grid services. In: 2012 Sixth International Conference on Next Generation Mobile Applications, Services and Technologies, pp. 205–210. IEEE (2012)
Awerbuch, S., Preston, A.M. (eds.): The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry, Topics in Regulatory Economics and Policy, vol. 26. Kluwer Academic Publishers, Berlin (1997)
Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: design, analysis and applications. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1653–1664 (2005)
Bremer, J., Rapp, B., Jellinghaus, F., Sonnenschein, M.: Tools for teaching demand-side management. In: Wohlgemuth, V., Page, B., Voigt, K. (eds.) Environmental Informatics and Industrial Environmental Protection - 23rd International Conference on Informatics for Environmental Protection, EnviroInfo2009, pp. 455–463 (2009)
Bremer, J.: Constraint-Handling mit Supportvektor-Dekodern in der verteilten Optimierung. Ph.D. thesis (2015). http://oops.uni-oldenburg.de/2336/
Bremer, J., Lehnhoff, S.: A decentralized PSO with decoder for scheduling distributed electricity generation. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 427–442. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_28
Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: IEEE Symposium Series on Computational Intelligence 2011 (SSCI 2011), Paris, France, April 2011
Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A.L.N. (eds.) Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART 2013), 15–18 February 2013, Barcelona, Spain, vol. 2, pp. 91–100. SciTePress (2013)
Coll-Mayor, D., Picos, R., Garciá-Moreno, E.: State of the art of the virtual utility: the smart distributed generation network. Int. J. Energy Res. 28(1), 65–80 (2004)
Wedde, H.F., Lehnhoff, S., Rehtanz, C., Krause, O.: Intelligent agents under collaborative control in emerging power systems. Int. J. Eng. Sci. Technol. 2, 45–59 (2010)
Futia, C.A.: Excess supply equilibria. J. Econ. Theory 14(1), 200–220 (1977)
Hansen, N.: The CMA evolution strategy: a tutorial. Technical report (2011). www.lri.fr/~hansen/cmatutorial.pdf
Hinrichs, C., Bremer, J., Sonnenschein, M.: Distributed hybrid constraint handling in large scale virtual power plants. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europe 2013). IEEE Power & Energy Society (2013)
Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-choice combinatorial optimization problems. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012. ORP, pp. 297–302. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00795-3_43
Hinrichs, C., Sonnenschein, M.: A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents. Int. J. Bio-Inspired Comput. 10, 69 (2017)
Kamphuis, R., Warmer, C., Hommelberg, M., Kok, K.: Massive coordination of dispersed generation using powermatcher based software agents. In: 19th International Conference on Electricity Distribution, May 2007
Kramer, O., Gieseke, F.: Short-term wind energy forecasting using support vector regression. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds.) SOCO 2011. AINSC, pp. 271–280. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19644-7_29
Lehn, J.M.: Towards complex matter: supramolecular chemistry and self-organization. Eur. Rev. 17(2), 263–280 (2009)
Liu, L., Thanheiser, S., Schmeck, H.: A reference architecture for self-organizing service-oriented computing. In: Brinkschulte, U., Ungerer, T., Hochberger, C., Spallek, R.G. (eds.) ARCS 2008. LNCS, vol. 4934, pp. 205–219. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78153-0_16
Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. CoRR abs/1007.4063 (2010)
Meunier, F.: Co-and tri-generation contribution to climate change control. Appl. Thermal Eng. 22(6), 703–718 (2002)
Mittal, S., Rainey, L.: Harnessing emergence: the control and design of emergent behavior in system of systems engineering. In: Proceedings of the Conference on Summer Computer Simulation, pp. 1–10. Society for Computer Simulation International (2015)
Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing–A Paradigm Shift for Complex Systems. Springer Science & Business Media, Heidelberg (2011)
Ngatchou, P., Zarei, A., El-Sharkawi, A.: Pareto multi objective optimization. In: Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, pp. 84–91. IEEE (2005)
Nieße, A.: Verteilte kontinuierliche Einsatzplanung in Dynamischen Virtuellen Kraftwerken. Dissertation, Carl v. Ossietzky Universität, Oldenburg (2015)
Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggregation and scheduling methods for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 1505–1514. IEEE (2014)
Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggrgation and scheduling for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Federated Conference on Computer Science and Information Systems - FedCSIS September 2014, Warsaw, Poland (2014)
Nieße, A., Bremer, J., Sonnenschein, M.: Continuous scheduling. In: Smart Nord - Final Report, pp. 69–76. Hartmann GmbH, Hannover (2015)
Nieße, A., Tröschel, M.: Controlled self-organization in smart grids. In: Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE), pp. 1–6. IEEE (2016)
Nikonowicz, Ł.B., Milewski, J.: Virtual power plants - general review: structure, application and optimization. J. Power Technol. 92(3) (2012). http://papers.itc.pw.edu.pl/index.php/JPT/article/view/284/492
Percec, V., et al.: Transformation from kinetically into thermodynamically controlled self-organization of complex helical columns with 3D periodicity assembled from dendronized perylene bisimides. J. Am. Chem. Soc. 135(10), 4129–4148 (2013)
Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based homeostatic control for green energy in the smart grid. ACM Trans. Intell. Syst. Technol. 2(4), 35:1–35:28 (2011)
Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic observer/controller architecture for organic computing. In: Jahrestagung, G.I. (1) LNI, vol. 93, pp. 112–119. GI (2006)
Steghöfer, J.-P., et al.: Trustworthy organic computing systems: challenges and perspectives. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang, D., Zhou, X. (eds.) ATC 2010. LNCS, vol. 6407, pp. 62–76. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16576-4_5
Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)
Wu, F., Moslehi, K., Bose, A.: Power system control centers: past, present, and future. Proc. IEEE 93(11), 1890–1908 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bremer, J., Lehnhoff, S. (2020). Controlled Self-organization for Steering Local Multi-objective Optimization in Virtual Power Plants. In: De La Prieta, F., et al. Highlights in Practical Applications of Agents, Multi-Agent Systems, and Trust-worthiness. The PAAMS Collection. PAAMS 2020. Communications in Computer and Information Science, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-51999-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-51999-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51998-8
Online ISBN: 978-3-030-51999-5
eBook Packages: Computer ScienceComputer Science (R0)