Skip to main content

Fuzzy System for Classification of Nocturnal Blood Pressure Profile and Its Optimization with the Crow Search Algorithm

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1222))

Included in the following conference series:

  • 305 Accesses

Abstract

Over time, different metaheuristics have been used for optimization in different soft computing techniques, such as fuzzy systems and neural networks. In this work we focus on the optimization of fuzzy systems with the Crow Search Algorithm. The fuzzy systems are designed to provide the classification of the patient’s night blood pressure profile. For this goal, two fuzzy systems are designed, one with trapezoidal membership functions and the other with Gaussian membership functions, to study their corresponding performances. When observing the results of the aforementioned study, it was decided to carry out the optimization to improve the classification of the nocturnal blood pressure profile of the patients and thereby provide a more accurate diagnosis. After carrying out the experimentation and once the different optimized fuzzy systems have been tested, it was concluded that the fuzzy system with Gaussian membership functions provides a better classification in a sample of 30 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  2. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  3. Yang, X.-S.: Firefly algorithm, Lévy flights and global optimization. In: Research and Development in Intelligent Systems XXVI, pp. 209–218 (2010)

    Google Scholar 

  4. Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  5. Meng, X., Liu, Y., Gao, X., Zhang, H.: A new bio-inspired algorithm: chicken swarm optimization. In: Advances in Swarm Intelligence, pp. 86–94 (2014)

    Google Scholar 

  6. Wang, G.G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31(7), 1995–2014 (2019)

    Article  Google Scholar 

  7. Martínez, R., Castillo, O., Aguilar, L.T.: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Hybrid Intelligent Systems, pp. 3–18. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Lagunes, M.L., Castillo, O., Soria, J.: Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm. In: Fuzzy Logic in Intelligent System Design, pp. 131–137 (2018)

    Google Scholar 

  9. Méndez, E., Castillo, O., Soria, J., Melin, P., Sadollah, A.: Water cycle algorithm with fuzzy logic for dynamic adaptation of parameters. In: Advances in Computational Intelligence, pp. 250–260 (2017)

    Google Scholar 

  10. Bernal, E., Castillo, O., Soria, J.: A fuzzy logic approach for dynamic adaptation of parameters in galactic swarm optimization. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7 (2016)

    Google Scholar 

  11. Hidalgo, D., Castillo, O., Melin, P.: Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. Inf. Sci. (NY) 179(13), 2123–2145 (2009)

    Article  Google Scholar 

  12. Melin, P., Pulido, M.: Optimization of ensemble neural networks with type-2 fuzzy integration of responses for the dow jones time series prediction. Intell. Autom. Soft Comput. 20(3), 403–418 (2014)

    Article  Google Scholar 

  13. Urias, J., Melin, P., Castillo, O.: A method for response integration in modular neural networks using interval type-2 fuzzy logic. In: 2007 IEEE International Fuzzy Systems Conference, pp. 1–6 (2007)

    Google Scholar 

  14. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169(Suppl. C), 1–12 (2016)

    Article  Google Scholar 

  15. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Englewood Cliffs (1997)

    Google Scholar 

  16. Wilson, J.M.: Essential cardiology: principles and practice. Tex. Heart Inst. J. 32(4), 616 (2005)

    Google Scholar 

  17. Texas Heart Institute: High Blood Pressure (Hypertension) (2017)

    Google Scholar 

  18. Guido, M.G.G.: Manual of Hypertension of the European Society of Hypertension. Taylor & Francis, Boca Raton (2008)

    Google Scholar 

  19. Wizner, B., Gryglewska, B., Gasowski, J., Kocemba, J., Grodzicki, T.: Normal blood pressure values as perceived by normotensive and hypertensive subjects. J. Hum. Hypertens. 17(2), 87–91 (2003)

    Article  Google Scholar 

  20. Friedman, O., Logan, A.G.: Nocturnal blood pressure profiles among normotensive, controlled hypertensive and refractory hypertensive subjects. Can. J. Cardiol. 25(9), e312–e316 (2009)

    Article  Google Scholar 

  21. Feria-carot, M.D., Sobrino, J.: Nocturnal hypertension. Hipertens. y riesgo Cardiovasc. 28(4), 143–148 (2011)

    Article  Google Scholar 

  22. Miramontes, I., Martínez, G., Melin, P., Prado-Arechiga, G.: A hybrid intelligent system model for hypertension diagnosis. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Nature-Inspired Design of Hybrid Intelligent Systems, pp. 541–550. Springer, Cham (2017)

    Chapter  Google Scholar 

  23. Miramontes, I., Martínez, G., Melin, P., Prado-Arechiga, G.: A hybrid intelligent system model for hypertension risk diagnosis. In: Fuzzy Logic in Intelligent System Design, pp. 202–213 (2018)

    Google Scholar 

  24. Melin, P., Miramontes, I., Prado-Arechiga, G.: A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis. Expert Syst. Appl. 107, 146–164 (2018)

    Article  Google Scholar 

  25. O’Brien, E., Parati, G., Stergiou, G.: Ambulatory blood pressure measurement. Hypertension 62(6), 988–994 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to express their thanks to the Consejo Nacional de Ciencia y Tecnologia and Tecnologico Nacional de Mexico/Tijuana Institute of Technology for the facilities and resources granted for the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miramontes, I., Melin, P., Prado-Arechiga, G. (2021). Fuzzy System for Classification of Nocturnal Blood Pressure Profile and Its Optimization with the Crow Search Algorithm. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1222. Springer, Cham. https://doi.org/10.1007/978-3-030-52190-5_2

Download citation

Publish with us

Policies and ethics