Skip to main content

Slip Effects on Fe3O4-Nanoparticles in a Nanofluid Past a Nonlinear Stretching Surface

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1222))

Included in the following conference series:

  • 256 Accesses

Abstract

In this article, we have considered the slip effects on Fe3O4-nanoparticles in a water-based nanofluid through a nonlinear stretching porous sheet. An appropriate similarity transformation variables have been applied to simplify the governing flow problem. The numerical solution of nonlinear differential equations are obtained using shooting technique. The physical influence of Porosity parameter, Prandtl number, Richardson number, Soret number, concentration buoyancy ratio, radiation parameter, Dufour parameter, slip parameter and Schmidt number are presented graphically. In particular, the effects of velocity, nanoparticle concentration and temperature profile are discussed.

Z. Zhou, M. M. Bhatti, M. Arif and M. F. Khan—Co-authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I., Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57, 528–594 (2013)

    Article  Google Scholar 

  2. Buongiorno, J., Hu, L.W., Kim, S.J., Hannink, R., Truong, B., Forrest, E.: Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues and research gaps. Nucl. Technol. 162, 80–91 (2008)

    Article  Google Scholar 

  3. Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sust. Energy Rev. 15, 1646–1668 (2011)

    Article  Google Scholar 

  4. Sheikholeslami, M., Ellahi, R., Ashorynejad, H.R., Domairry, G., Hayat, T.: Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J. Comput. Theor. Nanosci. 11, 486–496 (2014)

    Article  Google Scholar 

  5. Ellahi, R., Hassan, M., Zeeshan, A.: Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia Pac. J. Chem. Eng. 11, 179–186 (2015)

    Article  Google Scholar 

  6. Bhatti, M.M., Abbas, T., Rashidi, M.M., Ali, M.E.S.: Numerical simulation of entropy generation with thermal radiation on MHD carreau nanofluid towards a shrinking sheet. Entropy 18, 200 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bhatti, M.M., Michaelides, E.E.: Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J. Therm. Anal. Calorim. 1–10 (2020). https://doi.org/10.1007/s10973-020-09492-3

  8. Riaz, A., Zeeshan, A., Bhatti, M.M., Ellahi, R.: Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Phys. A 545, 123788 (2020)

    Article  MathSciNet  Google Scholar 

  9. Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A., Hal-Sulami, H.: Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl. Math. Mech. 41(4), 637–654 (2020). https://doi.org/10.1007/s10483-020-2599-7

    Article  Google Scholar 

  10. Ayub, M., Abbas, T., Bhatti, M.M.: Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. Eur. Phys. J. Plus 131(6), 1–9 (2016). https://doi.org/10.1140/epjp/i2016-16193-4

    Article  Google Scholar 

  11. Malvandi, A., Hedayati, F., Ganji, D.D.: Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Pow. Technol. 253, 377–384 (2014)

    Article  Google Scholar 

  12. Haq, R.U., Nadeem, S., Khan, Z.H., Akbar, N.S.: Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E 65, 17–23 (2015)

    Article  Google Scholar 

  13. Hakeem, A.A., Ganesh, N.V., Ganga, B.: Magnetic field effect on second order slip flow of nanofluid over a stretching/shrinking sheet with thermal radiation effect. J. Magn. Magn. Mater. 381, 243–257 (2015)

    Article  Google Scholar 

  14. Bhatti, M.M., Abbas, T., Rashidi, M.M.: A new numerical simulation of MHD stagnation-point flow over a permeable stretching/shrinking sheet in porous media with heat transfer. Iran. J. Sci. Technol. Trans. A Sci. 41(3), 779–785 (2016)

    Article  MathSciNet  Google Scholar 

  15. Bhatti, M.M., Shahid, A., Rashidi, M.M.: Numerical simulation of Fluid flow over a shrinking porous sheet by Successive linearization method. Alexandria Eng. J. 55, 51–56 (2016)

    Article  Google Scholar 

  16. Nadeem, S., Haq, R.U., Akbar, N.S., Khan, Z.H.: MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Eng. J. 52, 577–582 (2013)

    Article  Google Scholar 

  17. Shahid, A., Huang, H., Bhatti, M.M., Zhang, L., Ellahi, R.: Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface. Mathematics 8(3), 380 (2020)

    Article  Google Scholar 

  18. Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z., Ellahi, R.: Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate. Processes 8(3), 328 (2020)

    Article  Google Scholar 

  19. Qing, J., Bhatti, M.M., Abbas, M.A., Rashidi, M.M., Ali, M.E.S.: Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface. Entropy 18, 123 (2016)

    Article  Google Scholar 

  20. Zeeshan, A., Majeed, A.: Effect of magnetic dipole on radiative non-darcian mixed convective flow over a stretching sheet in porous medium. J. Nanofluid 5, 617–626 (2016)

    Article  Google Scholar 

  21. Bhatti, M.M., Rashidi, M.M.: Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J. Mol. Liq. 221, 567–573 (2016)

    Article  Google Scholar 

  22. Raza, M., Ellahi, R., Sait, S.M., Sarafraz, M.M., Shadloo, M.S., Waheed, I.: Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J. Therm. Anal. Calorim. 140(3), 1277–1291 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shahid, A., Zhou, Z., Bhatti, M.M., Arif, M., Khan, M.F. (2021). Slip Effects on Fe3O4-Nanoparticles in a Nanofluid Past a Nonlinear Stretching Surface. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1222. Springer, Cham. https://doi.org/10.1007/978-3-030-52190-5_26

Download citation

Publish with us

Policies and ethics