Abstract
In this article, we have considered the slip effects on Fe3O4-nanoparticles in a water-based nanofluid through a nonlinear stretching porous sheet. An appropriate similarity transformation variables have been applied to simplify the governing flow problem. The numerical solution of nonlinear differential equations are obtained using shooting technique. The physical influence of Porosity parameter, Prandtl number, Richardson number, Soret number, concentration buoyancy ratio, radiation parameter, Dufour parameter, slip parameter and Schmidt number are presented graphically. In particular, the effects of velocity, nanoparticle concentration and temperature profile are discussed.
Z. Zhou, M. M. Bhatti, M. Arif and M. F. Khan—Co-authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I., Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57, 528–594 (2013)
Buongiorno, J., Hu, L.W., Kim, S.J., Hannink, R., Truong, B., Forrest, E.: Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues and research gaps. Nucl. Technol. 162, 80–91 (2008)
Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sust. Energy Rev. 15, 1646–1668 (2011)
Sheikholeslami, M., Ellahi, R., Ashorynejad, H.R., Domairry, G., Hayat, T.: Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J. Comput. Theor. Nanosci. 11, 486–496 (2014)
Ellahi, R., Hassan, M., Zeeshan, A.: Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia Pac. J. Chem. Eng. 11, 179–186 (2015)
Bhatti, M.M., Abbas, T., Rashidi, M.M., Ali, M.E.S.: Numerical simulation of entropy generation with thermal radiation on MHD carreau nanofluid towards a shrinking sheet. Entropy 18, 200 (2016)
Bhatti, M.M., Michaelides, E.E.: Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J. Therm. Anal. Calorim. 1–10 (2020). https://doi.org/10.1007/s10973-020-09492-3
Riaz, A., Zeeshan, A., Bhatti, M.M., Ellahi, R.: Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Phys. A 545, 123788 (2020)
Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A., Hal-Sulami, H.: Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl. Math. Mech. 41(4), 637–654 (2020). https://doi.org/10.1007/s10483-020-2599-7
Ayub, M., Abbas, T., Bhatti, M.M.: Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. Eur. Phys. J. Plus 131(6), 1–9 (2016). https://doi.org/10.1140/epjp/i2016-16193-4
Malvandi, A., Hedayati, F., Ganji, D.D.: Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Pow. Technol. 253, 377–384 (2014)
Haq, R.U., Nadeem, S., Khan, Z.H., Akbar, N.S.: Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E 65, 17–23 (2015)
Hakeem, A.A., Ganesh, N.V., Ganga, B.: Magnetic field effect on second order slip flow of nanofluid over a stretching/shrinking sheet with thermal radiation effect. J. Magn. Magn. Mater. 381, 243–257 (2015)
Bhatti, M.M., Abbas, T., Rashidi, M.M.: A new numerical simulation of MHD stagnation-point flow over a permeable stretching/shrinking sheet in porous media with heat transfer. Iran. J. Sci. Technol. Trans. A Sci. 41(3), 779–785 (2016)
Bhatti, M.M., Shahid, A., Rashidi, M.M.: Numerical simulation of Fluid flow over a shrinking porous sheet by Successive linearization method. Alexandria Eng. J. 55, 51–56 (2016)
Nadeem, S., Haq, R.U., Akbar, N.S., Khan, Z.H.: MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Eng. J. 52, 577–582 (2013)
Shahid, A., Huang, H., Bhatti, M.M., Zhang, L., Ellahi, R.: Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface. Mathematics 8(3), 380 (2020)
Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z., Ellahi, R.: Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate. Processes 8(3), 328 (2020)
Qing, J., Bhatti, M.M., Abbas, M.A., Rashidi, M.M., Ali, M.E.S.: Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface. Entropy 18, 123 (2016)
Zeeshan, A., Majeed, A.: Effect of magnetic dipole on radiative non-darcian mixed convective flow over a stretching sheet in porous medium. J. Nanofluid 5, 617–626 (2016)
Bhatti, M.M., Rashidi, M.M.: Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J. Mol. Liq. 221, 567–573 (2016)
Raza, M., Ellahi, R., Sait, S.M., Sarafraz, M.M., Shadloo, M.S., Waheed, I.: Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J. Therm. Anal. Calorim. 140(3), 1277–1291 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Shahid, A., Zhou, Z., Bhatti, M.M., Arif, M., Khan, M.F. (2021). Slip Effects on Fe3O4-Nanoparticles in a Nanofluid Past a Nonlinear Stretching Surface. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1222. Springer, Cham. https://doi.org/10.1007/978-3-030-52190-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-52190-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-52189-9
Online ISBN: 978-3-030-52190-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)