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Abstract. Mastery learning algorithms are used in many adaptive
learning technologies to assess when a student has learned a particular
concept or skill. To assess mastery, some technologies utilize data-driven
models while others use simple heuristics. Prior work has suggested that
heuristics may often perform comparably to model-based algorithms. But
is there any reason we should expect these heuristics to be reasonable? In
this paper, we show that two prominent mastery learning heuristics can
be reinterpreted as model-based algorithms. In particular, we show that
the N -Consecutive Correct in a Row heuristic and a simplified version of
ALEKS’ mastery learning heuristic are both optimal policies for variants
of the Bayesian knowledge tracing model. By putting mastery learning
heuristics on the same playing field as model-based algorithms, we can
gain insights on their hidden assumptions about learning and why they
might perform well in practice.
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1 Introduction

Mastery learning is an instructional technique popularized by Benjamin Bloom
[7], but which at least dates back to progressive educational movements in the
early twentieth century [17,24]. The idea is to give students just the right amount
of instruction or practice that they need in order to mastery a particular topic
before moving them on to the next topic. Today, mastery learning underlies many
adaptive learning technologies, including Khan Academy, Duolingo, ASSIST-
ments, ALEKS, and cognitive tutors like MATHia. Each of these platforms are
being used by thousands to millions of students yearly, and as such, the way they
assess mastery can have real consequences for students. A lot of work has been
invested in developing statistical techniques to infer models of student learning
that make predictions about whether a student has learned a skill, which could
in turn be used in mastery learning [5,9,12,20,25]. However, in practice, many
state-of-the-art adaptive learning systems assess mastery in simple ways, which
are seemingly not very “intelligent” [4]. For example, some platforms use simple
heuristics to assess whether students have reached mastery, such as having stu-
dents receive practice on a skill until they answer questions correctly three times
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in a row. Even platforms that use models of student learning often have the
model parameters manually set by system designers or domain experts [10,22],
rather than leveraging data-driven techniques.

One advantage of using simple heuristics is that they are interpretable and
easy-to-convey to teachers, students, and other stakeholders. Moreover, they may
seem intuitively reasonable. However, it is not clear whether these intuitions in
principle align with (a) our understanding of how students learn or (b) inferences
we can make about student mastery from the data.

In this paper, we present a means for better understanding mastery learning
heuristics, by re-interpreting them as model-based algorithms. In particular, we
show that the N -Consecutive Correct in a Row (N -CCR) heuristic used by
ASSISTments and a simplified version of the mastery learning heuristic used by
ALEKS are both optimal mastery learning policies for variants of the Bayesian
knowledge tracing (BKT) model. By placing mastery learning heuristics in the
same playing field as model-based mastery learning algorithms, we hope to better
understand the theoretical assumptions about learning that mastery learning
heuristics are making, and as such, help guide designers of adaptive learning
systems to make more intentional decisions about what heuristics to use.

2 Background

In what follows, a mastery learning policy is any instructional policy that con-
siders topics–skills, concepts, or knowledge components (KCs)–one at a time,
and decides how many practice opportunities to give for the current topic before
moving on to the next. In all of the mastery learning policies we consider, the
decision will be made purely based on whether previous answers were correct
or incorrect on the students’ first attempt on each question for the same KC.
An optimal mastery learning policy under a model is one that gives the optimal
amount of practice subject to some accuracy threshold (e.g., 95% confidence
that the student has mastered the skill).

A popular approach to mastery learning that underlies cognitive tutors, such
as MATHia, is to use the Bayesian knowledge tracing (BKT) model. The stan-
dard BKT model for a single KC is a two-state hidden Markov model that
assumes that after receiving a practice opportunity t, the student is in one of
two knowledge states: the learned state, where they know the KC (Kt = 1), or
the unlearned state, where they do not know the KC (Kt = 0) [12]. When
the student begins using the adaptive learning system, BKT assumes they
start in the unlearned state with probability P (L0) = P (K1 = 1). If a stu-
dent is in the unlearned state, every time they attempt a practice opportu-
nity and receive feedback, they have some fixed probability of learning the KC,
P (T ) = P (Kt+1 = 1|Kt = 0). When the student is in the learned state, they
are assumed to stay there forever (i.e., no forgetting). Every time the student
is given a practice opportunity, we can see whether they answered the question
correctly (Ct = 1) or incorrectly (Ct = 0). If the student is in the unlearned
state, they will answer correctly with some probability of guessing P (G) and
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otherwise answer incorrectly. If the student is in the learned state, they will
answer correctly unless they slip with probability P (S). The BKT model for a
single skill is thus fully described by four parameters: P (L0), P (T ), P (G), and
P (S). When using the BKT model, one can continuously update the probability
that the student has learned the KC so far (P (Kt|C1, C2, . . . , Ct−1). The optimal
mastery learning policy for the BKT model continues to give practice opportu-
nities to the student until this probability exceeds some threshold, typically 0.95
[11,12].

3 N -CCR as a Model-Based Algorithm

The N -Consecutive Correct in a Row (N -CCR) heuristic keeps giving students
practice problems on a given topic or skill until the student answers the problems
correctly N times correctly in a row. This heuristic is used in ASSISTments’
Skill Builders exercises [6,15] and was previously used by Khan Academy [13].
Recently, Khan Academy has switched to a more gamified way of implementing
mastery learning, where students can go through a series of Mastery Levels,
but to reach the Proficient Level students still have to get a certain number of
problems correct in a row [16].

We now show that N -CCR can be viewed as the optimal mastery learning
policy for certain BKT models. Note that when using the N -CCR heuristic, if a
student gives any number of consecutive correct answers less than N followed by
an incorrect answer, then they are back in the same “state” as though they had
not given any correct answers. Now suppose that the true model of learning is a
BKT model. Then, this must mean once we see Ct−1 = 0, the student is identified
as having been in state Kt−1 = 0, or P (Kt−1 = 0|Ct−1 = 0) = 1. Using Bayes’
rule, it can be shown that this implies that the probability of slipping P (S) must
be zero. By setting the values of P (G), P (T ), and P (L0) appropriately, it can
be easily seen that N -CCR is the optimal mastery learning policy for some BKT
model where P (S) = 0 and for a given accuracy (e.g., 95%). We demonstrate
this precisely in the online supplementary material1. It is worth noting that
the BKT model with P (S) = 1 was actually a well-studied model in the 1960s
mathematical psychology community, known as the one-element model [8,14].

This re-formulation of N -CCR can help explain why it may seem to perform
well in practice. For example, Pelánek and Řihák [19] showed in simulation that,
even if students learn according to BKT models, the N -CCR heuristic (with the
optimal value of N) often performs almost as good as the optimal BKT mastery
learning policy. This may seem surprising, but our findings indicate that if P (S)
is small, then the best N -CCR heuristic will correspond to the mastery learning
policy for a BKT model that might be close to optimal.

4 TOW as a Model-Based Algorithm

The Tug-of-War (TOW) Heuristic is what we are calling a mastery learning
heuristic that gives points to students for answering questions correctly, removes
1 https://bit.ly/aied2020-heuristics.
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points for answering questions incorrectly (while keeping the minimum number
of points at zero), and keeps giving practice until the student achieves a cer-
tain number of points. We will use TOW+i,−j,N to designate the specific TOW
heuristic where the student gets i points for a correct answer, loses j points
for an incorrect answer and needs N points for mastery. ALEKS, a prominent
adaptive learning system, implements mastery learning using the TOW+1,−1,5

heuristic (or TOW+1,−1,3 in some cases) with a few differences2 [2]. Previously,
ALEKS used the TOW+2,−1,5 and TOW+2,−1,3 heuristics [23].

To see how some TOW heuristics can be interpreted as model-based algo-
rithms, consider a variant of the BKT model where we make no assumptions as
to how or when the student learns a KC. That is, P (T ) need not be a fixed prob-
ability (e.g., it can increase over time), it need not be the same for all students,
and it need not even be probabilistic. Since we do not make assumptions about
how students are learning, to implement mastery learning here, we simply want
to detect when there appears to have been a sudden increase in the probability
of answering correctly (from P (G) to 1 − P (S)). This is known as change-point
detection, which is a well studied problem in statistics and fields like quality
control [1,3,18]. Specifically, we can use the Bernoulli CUSUM chart algorithm
[21]. We describe this method and how it can be applied to mastery learning
in the online supplementary material3. Given that we do not make assumptions
about the probability of learning, we cannot make any statement about how
confident we are that the student has learned the skill. Instead, we can set the
parameters such that 95% of students who have not learned the skill would have
had at least a certain number of practice opportunities (which we can choose)
before we would mistakenly declare mastery. It can be shown that a variety of
TOW heuristics, including all of the ones mentioned above can be implemented
using the CUSUM algorithm with an appropriate choice of parameters.

5 Conclusion

Given that these heuristics may be more principled than they might appear at
first sight, perhaps their use in adaptive learning systems is warranted, especially
given that they are much easier to communicate to students than complex model-
based policies. However, other considerations need to also be taken into account.
For example, the N -CCR heuristic might be demotivating for students given that
a single “slip” punishes the student. On the other hand, if we believe students
can slip, then perhaps the N -CCR heuristic should not be used altogether! All
in all, a more comprehensive understanding of mastery learning heuristics and
their hidden models can hopefully help us ensure that adaptive learning systems
perform mastery learning in productive ways.

2 In the ALEKS Learning Sequence, if the student gets two consecutive answers correct
in a row, the student gets an extra point. Also, if the student revises an incorrect
answer on their second attempt, they subsequently gain a point, netting zero points.

3 https://bit.ly/aied2020-heuristics.
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