
A Socratic Tutor for Source Code
Comprehension

Zeyad Alshaikh(B), Lasagn Tamang(B), and Vasile Rus(B)

The University of Memphis, Memphis, TN 38152, USA
{zlshaikh,ljtamang,vrus}@memphis.edu

Abstract. Reported here are the findings of a comparative study on
the effects of using a Socratic Intelligent Tutoring System for source
code comprehension and learning computer programming. The result
shows there are significant differences between the two groups where
students who used Socratic Tutor ITS improved their knowledge by 45%
in term of learning gain, developed a better understanding of concepts
such as nested if-else and for loop, and improved their confidence level by
13%. Furthermore, the result of the Pearson product-moment correlation
coefficient shows a positive correlation (r = 0.68) between feedback from
the ITS and learning gain.

Keywords: Socratic method · Computer science education ·
Computer programming · Intelligent Tutoring System

1 Introduction

Introductory programming courses are difficult [10], frustrating [8], and often
considered a major stumbling block for many students [15]. There is much evi-
dence that drop-out and failure rates in introductory Computer Science courses
such as CS1 and CS2 are high (30–40%) [3,12,16].

Intelligent Tutoring Systems have been proven to be beneficial solutions
that can provide individualized, one-on-one instruction for all students [1], and
improve the quality and effectiveness of computer programming instruction [14].
As a result, many ITS systems were developed as early as 1974 [7] to aid students
on different programming phases [6,9,10,17,18].

In our case, we developed a dialogue-based intelligent tutoring system called
Socratic Tutor to help novice programmers acquire deep and robust program-
ming knowledge by engaging in source code understanding learning activities.
The Socratic Tutor is inspired by the Socratic instructional strategy [4] in the
form of a set of guiding questions meant to provide students a form of scaffolding
by targeting key aspects of the instructional task. Furthermore, the developed
system relies on self-explanation theories of learning [5] by implementing instruc-
tional strategies such as eliciting self-explanations through Socratic questioning.

Socratic Tutor ITS uses a natural language understanding (NLU) engine [2]
to evaluate students’ responses with respect by computing a semantic similar-
ity score to model/benchmark correct answers and well-known misconceptions
c© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12164, pp. 15–19, 2020.
https://doi.org/10.1007/978-3-030-52240-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52240-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-52240-7_3


16 Z. Alshaikh et al.

created prior by experts. Therefore, the NLU engine enables the Socratic Tutor
to immediately detect misconceptions and provide tailored feedback which was
proven to have a positive benefit on learning [13]. The developed system pro-
vides help to students using a three-level feedback strategy where at level one the
tutor explains briefly the target concept and gives the student a second chance
to retry answering the original question. At levels two and three, the tutor asks
questions in the form of multiple-choice and fill-in-the-blank questions.

This paper analyzes a comparative study of using the Socratic Tutor ITS for
learning JAVA programming in Introductory to Computer Science courses (CS1
and CS2) focusing on arithmetic operations, nested if − else, while loops, for
loops, arrays, and class.

2 Research Questions

To understand Socratic Tutor’s impact on students programming knowledge and
other characteristics such as confidence, we have conducted a study focusing on
the following research questions: (1) how much do students learn when using
Socratic Tutor?, (2) how much do students learn on each targeted programming
concept?, (3) how much does the Socratic Tutor have an impact on students’
self-confidence?, and (4) what is the relationship between feedback and learning
gains?

3 Method

Subjects who participated in the study were undergraduates (n = 70) enrolled in
the Introductory to Computer Science course at a major 4-year Asian university.
Half of the students were randomly assigned to a control group who used a
scaled-down version of the Socratic Tutor system that only presents JAVA code
examples and asks the participant to predict the output without providing any
feedback or Socratic tutoring. The other half of the participants were assigned
to a condition in which they used the Socratic Tutor. The Socratic Tutor asks
to explain the code while trying to understand it and then predicts the output.
After that, the tutor asks questions about the programming concepts used in the
code. If a participant’s answer is not correct or incomplete, the tutor initiates
the three-level feedback mechanism.

3.1 Materials

Materials for this experiment included a self-confidence survey and a pre- and
post-test. The self-confidence survey contained six questions with a 1–7 Likert
scale where each question related to one programming concept. The pre- and
post-test have similar levels of difficulty and contained 6 JAVA programs where
each question assessed the student’s understanding of a particular programming
concept. For each question in the pre- and post-test, the participants were asked
to predict the output of the code example.



A Socratic Tutor for Source Code Comprehension 17

3.2 Procedure

The experiment was conducted in a computer lab under supervision. First, par-
ticipants were debriefed about the purpose of the experiment and were given
a consent form. Those who consented took a self-confidence survey and the
pre-test. Once they had finished the pre-test, an approximately 60-min tutoring
session started. Finally, participants took the post-test and a post self-confidence
survey.

3.3 Assessment

The pre and post-test questions were scored 1 when the student answer was
correct and 0 otherwise. The learning gain score (LG) was calculated for each
participant as follows [11].

LG =

⎧
⎪⎪⎨

⎪⎪⎩

post-test−pre-test
6−pre-test post-test > pre-test

post-test−pre-test
pre-test post-test < pre-test
drop pre-test = post-test = 6 or 0

0 post-test = pretest

(1)

4 Results

4.1 Quantitative Analysis

Out of 70 participants, we dropped three participants from the treatment group
and two from the control group because they had a perfect score in both tests
and four students from the control group were dropped for not completing the
experiment.

Table 1. Mean and Stander Deviation of Pre-test, post-test and Learning gain for
control and treatment group

Section n Pre-test Post-test Learning gain (1)

Mean SD Mean SD Mean SD

Control group 29 3.46 2.1 3.68 2 12% 9.1

Treatment group 32 3.47 1.8 4.8 1.3 57% 41

To understand how much do students learn when using Socratic Tutor, we
analyzed the results from both groups in terms of average for pre-test, post-test,
and learning gains as shown in Table 1. The results indicate that the learning
gain of the treatment group was 45% higher and the results from a two-tailed
t-test showed that there is a statistically significant difference between the two
groups in learning gain scores (t = 3.6, df = 51, p< 0.05).



18 Z. Alshaikh et al.

We analyzed the pre-post test improvement for each programming concept
to understand how much do students learn on each programming concept when
using Socratic Tutor. The results show between 10% and 33% higher improve-
ment in treatment group, and there are a statistically significant differences
in nested if-else (t =−2.04, df = 56, p< 0.5) and for loops (t =−1.97, df = 54,
p< 0.5) concepts.

To understand how much does the Socratic Tutor affect students’ self-
confidence, we evaluated the pre-confidence and post-confidence scores. The
results show that the treatment group participants improved their confidence
level on average by 13% compared with −1.6% negative improvement in the
control group. The result from an independent-sample t-test shows that the dif-
ference is statistically significant (t =−3.1, df= 58, p < 0.05).

To understand the relationship between the feedback and learning gains, we
analyzed the relationship between the number of feedback each student received
and his/her learning gains. The result shows that students received on aver-
age 15.4 feedback per tutoring session with a standard deviation of SD = 7.1.
The relationship was investigated using the Pearson product-moment correla-
tion coefficient. We found a strong, positive correlation between the number of
feedback and learning gains (r = 0.68, n = 32, p < 0.05).

5 Conclusion

To understand the effectiveness of the Socratic Tutor ITS, we conducted a com-
parative study on seventy students who enrolled in Introductory to Computer
Science course.

The seventy students were divided into two groups (1) control group where
students have to read code and predict the output without any feedback from
the system, and (2) treatment group where students interact with the Socratic
Tutor.

The result shows that students who used Socratic-ITS improved their knowl-
edge by 45% in term of learning gain, developed better understanding on con-
cepts such as nested if-else and for loop, and improved their confidence level by
13%. Furthermore, the result of the Pearson product-moment correlation coeffi-
cient shows a positive correlation (r = 0.68) between feedback and learning gain.

Acknowledgments. This work as partially funded by the National Science Founda-
tion under the award #1822816 (Collaborative Research: CSEdPad: Investigating and
Scaffolding Students’ Mental Models during Computer Programming Tasks to Improve
Learning, Engagement, and Retention) to Dr. Vasile Rus. All opinions stated or implied
are solely the authors’ and do not reflect the opinions of the funding agency.



A Socratic Tutor for Source Code Comprehension 19

References

1. Anderson, J.R., Skwarecki, E.: The automated tutoring of introductory computer
programming. Commun. ACM 29(9), 842–849 (1986)

2. Banjade, R., et al.: Nerosim: a system for measuring and interpreting semantic
textual similarity. In: Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015), pp. 164–171 (2015)

3. Beaubouef, T., Mason, J.: Why the high attrition rate for computer science stu-
dents: some thoughts and observations. ACM SIGCSE Bull. 37(2), 103–106 (2005)

4. Chang, K.E., Sung, Y.T., Wang, K.Y., Dai, C.Y.: Web/spl I.bar/soc: a socratic-
dialectic-based collaborative tutoring system on the world wide web. IEEE Trans.
Educ. 46(1), 69–78 (2003)

5. Chi, M.T., De Leeuw, N., Chiu, M.H., LaVancher, C.: Eliciting self-explanations
improves understanding. Cogn. Sci. 18(3), 439–477 (1994)

6. Dadic, T., Stankov, S., Rosic, M.: Prototype model of tutoring system for program-
ming. In: 28th International Conference on Information Technology Interfaces, pp.
41–46. IEEE (2006)

7. Danielson, R.L., Nievergelt, J.: An automatic tutor for introductory programming
students (1974)

8. Johnson, W.L.: Understanding and debugging novice programs. Artif. Intell. 42(1),
51–97 (1990)

9. Johnson, W.L., Soloway, E.: Proust: knowledge-based program understanding.
IEEE Trans. Softw. Eng. 3, 267–275 (1985)

10. Lane, H.C., VanLehn, K.: A dialogue-based tutoring system for beginning pro-
gramming. In: FLAIRS Conference, pp. 449–454 (2004)

11. Marx, J.D., Cummings, K.: Normalized change. Am. J. Phys. 75(1), 87–91 (2007)
12. Mcgettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., Mander, K.: Grand

challenges in computing: education-a summary. Comput. J. 48(1), 42–48 (2005)
13. Mory, E.H.: Feedback research revisited. Handbook Res. Educ. Commun. Technol.

2, 745–783 (2004)
14. Pillay, N.: Developing intelligent programming tutors for novice programmers.

ACM SIGCSE Bull. 35(2), 78–82 (2003)
15. Proulx, V.K.: Programming patterns and design patterns in the introductory com-

puter science course. ACM SIGCSE Bull. 32(1), 80–84 (2000)
16. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: a

review and discussion. Comput. Sci. Educ. 13(2), 137–172 (2003)
17. Soloway, E.M., Woolf, B., Rubin, E., Barth, P.: Meno-II: An intelligent tutoring

system for novice programmers. In: Proceedings of the 7th International Joint Con-
ference on Artificial Intelligence, vol. 2, pp. 975–977. Morgan Kaufmann Publishers
Inc. (1981)

18. Woods, P.J., Warren, J.R.: Rapid prototyping of an intelligent tutorial system.
In: Proceedings of 12th Australian Society for Computers in Learning in Tertiary
Education, pp. 557–563 (1995)


	A Socratic Tutor for Source Code Comprehension
	1 Introduction
	2 Research Questions
	3 Method
	3.1 Materials
	3.2 Procedure
	3.3 Assessment

	4 Results
	4.1 Quantitative Analysis

	5 Conclusion
	References




