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Abstract. Online programming courses have become widely available and host
thousands of learners every year. In these courses, participants must solve
programming exercises by submitting partial solutions and checking the out-
come. The sequence of partial solutions submitted by a student constitutes the
programming trajectory followed by the student.
In our work, we define a supervised machine learning algorithm that takes as

input these programming trajectories and predicts whether a student will suc-
cessfully complete the next exercise. We have validated our model with two
different datasets: the first one is a set of problems from the online learning
platform Robomission with over one hundred thousand exercises submitted. The
second one comprises one hundred thousand exercises submitted to the Hour of
Code challenge.
The results obtained indicate that our model can accurately predict the future

performance of the students. This work provides not only a new method to
represent students’ programming trajectories but also an efficient approach to
predict the students’ future performance. Furthermore, the information provided
by the model can be used to select the students that would benefit from an
intervention.
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1 Introduction

Online programming courses have emerged as a popular way to introduce students to
programming [1]. These courses present several advantages: they are easily accessible,
and students face interesting challenges. Unfortunately, it is not feasible to provide
individual support to each student due to the large number of students enrolled in these
courses. Automatic systems capable of providing adaptive support could enhance the
students’ experience and improve their success rate [2].

In order to develop these automatic systems, there is a need to develop models
capable of detecting students that will likely fail [3–5]. These models could use the
large datasets that students generate when completing programming tasks [6, 7]. Stu-
dents usually submit several partial solutions before solving a task, creating a pro-
gramming trajectory for each exercise [8, 9]. These programming trajectories can be
analyzed by machine learning systems to find general patterns [10].
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In this study we present a supervised machine learning model that predicts the
student future programming performance. The model takes the programming trajectory
followed by the student and estimates the probability of the student successfully
completing the next exercise. The model has been validated using two different datasets
obtained from two different online programming environments, Robomission [11], and
the Hour of Code challenge from Code.org [12].

Our results indicate that this model can predict accurately whether a student will be
able to successfully complete a programming exercise. The information provided by
the model can be used to rank students in terms of their performance. Using this
ranking one can automatically select a group student that would benefit most from an
intervention.

2 Methods

2.1 Data

In this study we worked with two different datasets. The first dataset is a set of
programming trajectories submitted by students while completing one exercise in the
Hour of Code challenge [13]. Additionally, for each student the dataset contains
information about whether the student successfully completed the next task. The
exercises and their solutions are shown in Fig. 1. Piech et al. [8] describe this dataset in
more detail. The second dataset comprises 85 programming tasks from the Robomis-
sion programming platform. Effenberfer [14] gives a thorough description of the
dataset.

2.2 Proposed Model

Our goal is to generate a supervised machine learning algorithm capable of predicting
whether the student will successfully complete the next exercise. To this end we will
use the programming trajectories followed by the students T = {w0, w1 … wn}. Where
w0 is the state before the student starts to work, wi are the code snapshots submitted by
the student and wn is the last snapshot.

The training phase is straightforward: all the programming trajectories present in
the training dataset are assembled into a tree. Different branches of the tree contain

Fig. 1. Hour of code exercise 18 (left) and exercise 19 (right) and example solutions. To solve
the exercise the student must program the squirrel to reach the acorn.
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information about different programming trajectories. Figure 2 describes the process to
integrate a new trajectory {w0, w1, w5} into a tree. For each code snapshot present in
the trajectory we check if there is a branch in the tree with matching snapshots. If there
is such a branch, we follow it while the partial solutions match. As soon as we find a
partial solution (w5 in this case) that is not present in the branch, a new branch is
created.

Once we have processed all the student trajectories to generate the tree, we store in
each node the relevant parameters of the students that ended their programming tra-
jectories in that node. In this study we stored the proportion of students that suc-
cessfully completed the next exercise. After assembling the tree, we can estimate the
probability that a new student with trajectory Ti will successfully complete the next
exercise. If we want to classify the student, we only need to compare this probability
with the threshold that we have selected.

We have selected the Receiver Operating Characteristic (ROC) curve [15] and the
area under the curve (AUC) to measure the performance of the classifier. We have used
a 10-fold crossvalidation [16] stratified over students to compute them. We will
compare our model optimal performance with the results of a simple baseline model.
Our baseline model expects the performance of both tasks, the one taken as input and
the predicted one, to be the same.

3 Results

We start examining whether our model is successfully detecting students who fail the
next exercise in the Hour of Code challenge. The left side of Fig. 3 shows that the ROC
curve is systematically above the identity line (y = x). The area under the curve
(AUC) of our model in this case is 0.77, with a 95% confidence interval (0.77–0.79).
Both the AUC and the confidence interval are greater than 0.5, indicating that our
model is performing better than a random classifier. Figure 3 also contain the main

Fig. 2. Steps followed to integrate a new trajectory {w0, w1, w5} into the tree. Two different
leaves of the final tree present the same partial solution.
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results for the baseline model and the optimal threshold. We can see that the baseline
model is much closer to the bottom left corner of the figure than the optimal threshold.

The right side of Fig. 3 shows the AUC obtained for each task in the Robomission
dataset versus the number of students that attempted each task. We performed a loess
regression [16] looking for a correlation between AUC and the number of students.
From the graph we can conclude that there is no such correlation. However, the
variability of AUC values depends on the number of students. When the number of
students is below 500 the AUC values show high variability. For values over 500 the
variability decreases markedly.

4 Conclusions

In this study we present a machine learning algorithm able to predict the future per-
formance of novice programmers using their programming trajectories in just one
exercise. The output of the model can be used to rank students according to their
predicted performance. The data used by the model can be easily obtained in online
programming environments.

We have validated our model using two different datasets from two online learning
platforms. Our results indicate that the model can classify students with reasonable
accuracy. We have also found that the average performance of our model seems to be
independent from the number of students attempting the task.

Fig. 3. Left: ROC curve obtained when classifying failing students in the Hour of Code
exercise. The cyan region represents the 95% confidence interval. Right: AUC values for all the
Robomission tasks vs. the number of students that completed each task. The line represents the
loess regression of the data points.
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