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Abstract. Recent advancements in the field of deep learning for natural
language processing made it possible to use novel deep learning architec-
tures, such as the Transformer, for increasingly complex natural language
processing tasks. Combined with novel unsupervised pre-training tasks
such as masked language modeling, sentence ordering or next sentence
prediction, those natural language processing models became even more
accurate. In this work, we experiment with fine-tuning different pre-
trained Transformer based architectures. We train the newest and most
powerful, according to the glue benchmark, transformers on the SemEval-
2013 dataset. We also explore the impact of transfer learning a model
fine-tuned on the MNLI dataset to the SemEval-2013 dataset on gener-
alization and performance. We report up to 13% absolute improvement
in macro-average-F1 over state-of-the-art results. We show that models
trained with knowledge distillation are feasible for use in short answer
grading. Furthermore, we compare multilingual models on a machine-
translated version of the SemEval-2013 dataset.

Keywords: Self-attention · Transfer learning · Short answer grading

1 Introduction

Online tutoring platforms enable students to learn individually and indepen-
dently. To provide the users with individual feedback on their answers, the
answers have to be graded. In large tutoring platforms, there are an abundant
number of domains and questions. This makes building a general system for
short answer grading challenging, since domain-related knowledge is frequently
needed to evaluate an answer. Additionally, the increasing accuracy of short
answer grading systems makes it feasible to employ them in examinations. In
this scenario it is desirable to achieve the maximum possible accuracy, with a rel-
atively high computational budget, while in case of tutoring a less computational
intensive model is desirable to keep costs down and increase responsiveness. In
this work, we experiment with fine-tuning the most common transformer models
and explore the following questions:
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Does the size of the Transformer matter for short answer grading? How well
do multilingual Transformers perform? How well do multilingual Transformers
generalize to another language? Are there better pre-training tasks for short
answer grading? Does knowledge distillation work for short answer grading?

The field of short answer grading can mainly be categorized into two classes of
approaches. The first ones represent the traditional approaches, based on hand-
crafted features [14,15] and the second ones are deep learning based approaches
[1,8,13,16,18,21]. One of the core constraints of short answer grading remained
the limited availability of labeled domain-relevant training data. This issue was
mitigated by transfer learning from models pre-trained using unsupervised pre-
training tasks, as shown by Sung et al. [21] outperforming previous approaches
by about twelve percent. In this study, we aim to extend upon the insights
provided by Sung et al. [21].

2 Experiments

We evaluate our proposed approach on the SemEval-2013 [5] dataset. The dataset
consists of questions, reference answers, student answers and three-way labels,
represenenting the correct, incorrect and contradictory class. We trans-
late it with the winning method from Wmt19 [2]. For further information see
Sung et al. [21]. We also perform transfer learning from a model previously
fine-tuned on the MNLI [22] dataset.1

For training and later comparison we utilize a variety of models, including
BERT [4], RoBERTa [11], AlBERT [10], XLM [9] and XLMRoBERTa [3]. We also
include distilled models of BERT and RoBERTa in the study [19]. Furthermore
we include a RoBERTa based model previously fine-tuned on the MNLI dataset.

For fine tuning we add a classification layer on top of every model. We use
the AdamW [12] optimizer, with a learning rate of 2e−5 and a linear learning
rate schedule with warm up. For large transformers we extend the number of
epochs to 24, but we also observe notable results with 12 epochs or less. We train
using a single NVIDIA 2080ti GPU (11GB) with a batch size of 16, utilizing
gradient accumulation. Larger batches did not seem to improve the results. To
fit large transformers into the GPU memory we use a combination of gradient
accumulation and mixed precision with 16 bit floating point numbers, provided
by NVIDIAs apex library2. We implement our experiments using huggingfaces
transformer library [23]. We will release our training code on GitHub3. To ensure
comparability, all of the presented models where trained with the same code,
setup and hyper parameters (Table 1).

3 Results and Analysis

Does the size of the Transformer matter for short answer grading?
Large models demonstrate a significant improvement compared to Base models.
1 https://www.nyu.edu/projects/bowman/multinli/.
2 https://github.com/NVIDIA/apex.
3 https://github.com/28Smiles/SAS-AIED2020.

https://www.nyu.edu/projects/bowman/multinli/
https://github.com/NVIDIA/apex
https://github.com/28Smiles/SAS-AIED2020


Investigating Transformers for Automatic Short Answer Grading 45

T
a
b
le

1
.

R
es

u
lt

s
o
n

th
e

S
ci

E
n
ts

B
a
n
k

D
a
ta

se
t

o
f

S
em

E
va

l
2
0
1
3
.
A

cc
u
ra

cy
(A

cc
),

m
a
cr

o
-a

v
er

a
g
e-

F
1

(M
-F

1
),

a
n
d

w
ei

g
h
te

d
-a

v
er

a
g
e-

F
1

(W
-F

1
)

a
re

re
p
o
rt

ed
in

p
er

ce
n
ta

g
e.

L
a
n
g
u
a
g
e
s
T
ra

in
e
d

E
n
g
li
sh

G
e
rm

a
n

U
n
se

e
n

a
n
sw

e
r

U
n
se

e
n

q
u
e
st
io
n

U
n
se

e
n

d
o
m

a
in

U
n
se

e
n

a
n
sw

e
r

U
n
se

e
n

q
u
e
st
io
n

U
n
se

e
n

d
o
m

a
in

A
c
c

M
-F

1
W

-F
1

A
c
c

M
-F

1
W

-F
1

A
c
c

M
-F

1
W

-F
1

A
c
c

M
-F

1
W

-F
1

A
c
c

M
-F

1
W

-F
1

A
c
c

M
-F

1
W

-F
1

B
a
se

li
n
e
[5
]

e
n

5
5
.6

4
0
.5

5
2
.3

5
4
.0

3
9
.0

5
2
.0

5
7
.7

4
1
.6

5
5
.4

-
-

-
-

-
-

-
-

-

E
T
S

[6
]

e
n

7
2
.0

6
4
.7

7
0
.8

5
8
.3

3
9
.3

5
3
.7

5
4
.3

3
3
.3

4
6
.1

-
-

-
-

-
-

-
-

-

S
O
F
T
C
A
R

[7
]

e
n

6
5
.9

5
5
.5

6
4
.7

6
5
.2

4
6
.9

6
3
.4

6
3
.7

4
8
.6

6
2
.0

-
-

-
-

-
-

-
-

-

M
E
A
D

[1
7
]

e
n

-
4
2
.9

5
5
.4

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

G
ra

p
h

[1
7
]

e
n

-
4
3
.8

5
6
.7

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

S
u
lt
a
n

e
t
a
l.

[2
0
]

e
n

6
0
.4

4
4
.4

5
7
.0

6
4
.3

4
5
.5

6
1
.5

6
2
.7

4
5
.2

6
0
.3

-
-

-
-

-
-

-
-

-

S
a
h
a

e
t
a
l.

[1
8
]

e
n

7
1
.8

6
6
.6

7
1
.4

6
1
.4

4
9
.1

6
2
.8

6
3
.2

4
7
.9

6
1
.2

-
-

-
-

-
-

-
-

-

M
a
rv

a
n
iy
a

e
t
a
l.

[1
3
]

e
n

-
6
3
.6

7
1
.9

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

S
u
n
g

e
t
a
l.

[2
1
]

e
n

7
5
.9

7
2
.0

7
5
.8

6
5
.3

5
7
.5

6
4
.8

6
3
.8

5
7
.9

6
3
.4

-
-

-
-

-
-

-
-

-

B
E
R
T

D
I
S
T

I
L
L

e
n

6
9
.2

6
7
.2

6
9
.2

5
6
.6

5
4
.7

5
6
.6

6
1
.4

4
9
.7

6
1
.4

3
8
.8

2
6
.2

3
8
.8

3
3
.7

2
1
.5

3
3
.7

5
1
.7

2
9
.5

5
1
.7

B
E
R
T

B
A

S
E

e
n

7
2
.8

7
0
.6

7
2
.8

5
7
.3

5
6
.0

5
7
.3

6
3
.4

5
4
.6

6
3
.4

4
5
.0

3
7
.0

4
5
.0

4
0
.5

3
2
.9

4
0
.5

5
9
.0

4
1
.7

5
9
.0

B
E
R
T

L
A

R
G

E
e
n

7
5
.8

7
5
.0

7
5
.8

6
3
.4

6
2
.4

6
3
.4

6
7
.7

6
2
.8

6
7
.7

5
0
.2

4
0
.5

5
0
.2

4
3
.7

3
5
.5

4
3
.7

5
7
.7

4
2
.2

5
7
.7

R
o
B
E
R
T
a
D

I
S
T

I
L
L

e
n

7
4
.8

7
3
.2

7
4
.8

5
6
.9

5
5
.2

5
6
.9

6
5
.1

5
5
.6

6
5
.1

4
8
.0

4
0
.4

4
8
.0

4
4
.1

3
6
.7

4
4
.1

5
8
.2

4
0
.2

5
8
.2

R
o
B
E
R
T
a
B

A
S
E

e
n

7
4
.5

7
3
.2

7
4
.5

6
3
.2

6
1
.7

6
3
.2

6
5
.3

6
2
.5

6
5
.3

4
7
.8

3
8
.1

4
7
.8

4
3
.5

3
5
.1

4
3
.5

6
0
.6

4
3
.2

6
0
.6

R
o
B
E
R
T
a
L
A

R
G

E
e
n

7
6
.7

7
5
.5

7
6
.7

6
4
.1

6
2
.7

6
4
.1

6
6
.8

6
5
.6

6
6
.8

4
8
.8

4
0
.4

4
8
.8

4
2
.7

3
4
.7

4
2
.7

6
1
.5

4
8
.2

6
1
.5

R
o
B
E
R
T
a
L
A

R
G

E
d
e

4
1
.2

1
9
.4

4
1
.2

4
7
.7

2
1
.5

4
7
.7

4
2
.0

1
9
.7

4
2
.0

4
1
.2

1
9
.4

4
1
.2

4
7
.7

2
1
.5

4
7
.7

4
2
.0

1
9
.7

4
2
.0

R
o
B
E
R
T
a
L
A

R
G

E
e
n
,
d
e

7
6
.1

7
4
.9

7
6
.1

6
3
.0

6
1
.9

6
3
.0

6
5
.6

6
3
.3

6
5
.6

7
3
.9

7
2
.3

7
3
.9

5
8
.9

5
7
.3

5
8
.9

6
1
.9

5
6
.3

6
1
.9

R
o
B
E
R
T
a
L
A

R
G

E
,M

N
L
I

e
n

7
8
.8

7
8
.3

7
8
.8

6
6
.4

6
5
.7

6
6
.4

7
1
.8

7
0
.8

7
1
.8

5
2
.6

4
9
.3

5
2
.6

4
6
.1

4
2
.5

4
6
.1

6
0
.1

5
1
.9

6
0
.1

R
o
B
E
R
T
a
L
A

R
G

E
,M

N
L
I

d
e

6
2
.6

5
9
.1

6
2
.6

5
5
.1

5
1
.5

5
5
.1

6
6
.5

6
6
.8

6
6
.5

7
4
.9

7
4
.0

7
4
.9

6
0
.8

5
9
.0

6
0
.8

6
2
.5

5
7
.2

6
2
.5

R
o
B
E
R
T
a
L
A

R
G

E
,M

N
L
I

e
n
,
d
e

7
9
.7

7
9
.1

7
9
.7

6
6
.3

6
5
.3

6
6
.3

6
9
.4

6
9
.1

6
9
.4

7
6
.0

7
5
.0

7
6
.0

5
9
.6

5
8
.4

5
9
.6

6
4
.9

5
9
.2

6
4
.9

A
lB

E
R
T

B
A

S
E

e
n

7
2
.6

7
1
.4

7
2
.6

5
7
.6

5
5
.2

5
7
.6

6
0
.1

5
2
.3

6
0
.1

3
7
.0

3
1
.5

3
7
.0

3
0
.0

2
4
.9

3
0
.0

4
0
.6

3
1
.8

4
0
.6

A
lB

E
R
T

L
A

R
G

E
e
n

7
1
.3

7
0
.1

7
1
.3

5
8
.1

5
6
.8

5
8
.1

6
5
.3

6
0
.7

6
5
.3

4
5
.0

4
2
.1

4
5
.0

3
8
.7

3
4
.9

3
8
.7

5
8
.1

4
6
.0

5
8
.1

X
L
M

M
L
M

−
T

L
M

−
X

N
L
I

e
n

7
2
.6

7
1
.2

7
2
.6

5
7
.6

5
5
.5

5
7
.6

5
6
.3

4
4
.8

5
6
.3

4
8
.0

4
7
.4

4
8
.0

4
3
.7

4
3
.3

4
3
.7

4
7
.7

4
1
.5

4
7
.7

X
L
M

M
L
M

−
T

L
M

−
X

N
L
I

d
e

5
7
.0

5
4
.8

5
7
.0

4
3
.7

4
1
.9

4
3
.7

5
6
.4

4
1
.2

5
6
.4

6
8
.8

6
6
.5

6
8
.8

5
4
.0

5
1
.6

5
4
.0

5
5
.8

4
4
.8

5
5
.8

X
L
M

M
L
M

−
T

L
M

−
X

N
L
I

e
n
,
d
e

6
4
.8

6
2
.2

6
4
.8

5
2
.1

4
9
.2

5
2
.1

4
8
.6

3
5
.7

4
8
.6

6
3
.8

6
1
.2

6
3
.8

5
1
.8

4
9
.7

5
1
.8

4
8
.1

3
3
.8

4
8
.1

X
L
M

R
o
B
E
R
T
a
B

A
S
E

e
n

7
5
.4

7
3
.8

7
5
.4

5
9
.9

5
7
.9

5
9
.9

6
2
.6

5
4
.4

6
2
.6

6
4
.2

6
0
.6

6
4
.2

5
2
.7

4
8
.3

5
2
.7

6
0
.1

4
9
.5

6
0
.1

X
L
M

R
o
B
E
R
T
a
B

A
S
E

d
e

6
9
.0

6
7
.4

6
9
.0

5
3
.6

5
1
.9

5
3
.6

6
2
.3

5
1
.9

6
2
.3

7
3
.4

7
1
.7

7
3
.4

5
6
.9

5
5
.6

5
6
.9

6
0
.8

4
9
.7

6
0
.8

X
L
M

R
o
B
E
R
T
a
B

A
S
E

e
n
,
d
e

7
4
.1

7
2
.4

7
4
.1

5
9
.1

5
7
.5

5
9
.1

6
0
.1

4
8
.1

6
0
.1

7
3
.1

7
1
.3

7
3
.1

5
6
.1

5
4
.6

5
6
.1

5
9
.4

4
6
.5

5
9
.4



46 L. Camus and A. Filighera

The improvement arises most likely due to the increased capacity of the model, as
more parameters allow the model to retain more information of the pre-training
data.

How well do multilingual Transformers perform? The XLM [9] based
models do not perform well in this study. The RoBERTa based models (XLM-
RoBERTa) seem to generalize better than their predecessors. XLMRoBERTa
performs similarly to the base RoBERTa model, falling behind in the unseen
questions and unseen domains category. Subsequent investigations could include
fine-tuning the large variant on MNLI and SciEntsBank. Due to GPU memory
constraints, we were not capable to train the large variant of this model.

How well do multilingual Transformers generalize to another lan-
guage? The models with multilingual pre-training show stronger generalization
across languages than their English counterparts. We are able to observe that the
score of the multilingual model increases across languages it was never fine-tuned
on, while the monolingual model does not generalize.

Are there better pre-training tasks for short answer grading? Transfer
learning a model from MNLI yields a significant improvement over the same
version of the model not fine-tuned on MNLI. It improves the models ability to
generalise to a separate domain. The models capabilities on the german version
of the dataset are also increased, despite the usage of a monolingual model. The
reason for this behavior should be further investigated.

Does knowledge distillation work for short answer grading? The usage
of models pre-trained with knowledge distillation yields a slightly lower score.
However, since the model is 40% smaller, a maximum decrease in performance
of about 2% to the previous state of the art may be acceptable for scenarios
where computational resources are limited.

4 Conclusion and Future Work

In this paper we demonstrate that large Transformer-based pre-trained models
achieve state of the art results in short answer grading. We were able to show that
models trained on the MNLI dataset are capable of transferring knowledge to the
task of short answer grading. Moreover, we were able to increase a models overall
score, by training it on multiple languages. We show that the skills developed
by a model trained on MNLI improve generalization across languages. It is also
shown, that cross lingual training improves scores on SemEval2013. We show that
knowledge distillation allows for good performance, while keeping computational
costs low. This is crucial in evaluating answers from many users, like in online
tutoring platforms.

Future research should investigate the impact of context on the classification.
Including the question or its source may help the model grade answers, which
were not considered during the reference answer creation.
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