Skip to main content

Reduced Order Modeling Assisted by Convolutional Neural Network for Thermal Problems with Nonparametrized Geometrical Variability

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1229))

Included in the following conference series:

  • 726 Accesses

Abstract

In this work, we consider a nonlinear transient thermal problem numerically solved by a high-fidelity model. The objective is to derive fast approximations of the solutions to this problem, under nonparametrized variability of the geometry, and the convection and radiation boundary conditions, using physics-based reduced order models (ROM). Nonparametrized geometrical variability is a challenging task in model order reduction, which we propose to address using deep neural networks. First, a convolutional neural network (CNN) is trained to compute the discretization error of a fastly simulated solution on a coarse mesh, under the aforementioned geometry and boundary conditions variability. Then, for a fixed geometry, a ROM is constructed under the boundary conditions variability; the data used to construct the ROM being the coarse solutions and the CNN predicted discretization errors. We illustrate that in all our tested configurations, the reduced order model improves the accuracy of the coarse and CNN predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayensa-Jiménez, J., Doweidar, M.H., Sanz-Herrera, J.A., Doblaré, M.: An unsupervised data completion method for physically-based data-driven models. Comput. Methods Appl. Mech. Eng. 344, 120–143 (2019)

    Article  MathSciNet  Google Scholar 

  2. Casenave, F., Akkari, N., Bordeu, F., Rey, C., Ryckelynck, D.: A nonintrusive distributed reduced order modeling framework for nonlinear structural mechanics - application to elastoviscoplastic computations. Int. J. Numer. Methods Eng. 121, 32–53 (2020)

    Article  MathSciNet  Google Scholar 

  3. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)

    Google Scholar 

  4. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  5. de Boer, A., van der Schoot, M.S., Bijl, H.: Mesh deformation based on radial basis function interpolation. Comput. Struct. 85(11), 784–795 (2007). Fourth MIT Conference on Computational Fluid and Solid Mechanics

    Article  Google Scholar 

  6. Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int. J. Numer. Methods Eng. 98(9), 625–662 (2014)

    Article  MathSciNet  Google Scholar 

  7. Freno, B.A., Carlberg, K.T.: Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations. Comput. Methods Appl. Mech. Eng. 348, 250–296 (2019)

    Article  MathSciNet  Google Scholar 

  8. Hernández, J.A., Caicedo, M.A., Ferrer, A.: Dimensional hyper-reduction of nonlinear finite element models via empirical cubature. Comput. Methods Appl. Mech. Eng. 313, 687–722 (2017)

    Article  MathSciNet  Google Scholar 

  9. Kissas, G., Yang, Y., Hwuang, E., Witschey, W.R., Detre, J.A., Perdikaris, P.: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2020)

    Article  MathSciNet  Google Scholar 

  10. Ryckelynck, D., Gallimard, L., Jules, S.: Estimation of the validity domain of hyper-reduction approximations in generalized standard elastoviscoplasticity. Adv. Model. Simul. Eng. Sci. 2(1), 19 (2015)

    Article  Google Scholar 

  11. Salaken, S.M., Khosravi, A., Nguyen, T., Nahavandi, S.: Seeded transfer learning for regression problems with deep learning. Expert Syst. Appl. 115, 565–577 (2019)

    Article  Google Scholar 

  12. Sirovich, L.: Turbulence and the dynamics of coherent structures, parts I, II and III. Q. Appl. Math. XLV, 561–590 (1987)

    Article  Google Scholar 

  13. Xiao, D.: Error estimation of the parametric non-intrusive reduced order model using machine learning. Comput. Methods Appl. Mech. Eng. 355, 513–534 (2019)

    Article  MathSciNet  Google Scholar 

  14. Yaghoobi, M., Wu, D., Davies, M.E.: Fast non-negative orthogonal matching pursuit. IEEE Sig. Process. Lett. 22(9), 1229–1233 (2015)

    Article  Google Scholar 

  15. Zhu, Y., Wu, X., Li, P., Zhang, Y., Hu, X.: Transfer learning with deep manifold regularized auto-encoders. Neurocomputing 369, 145–154 (2019)

    Article  Google Scholar 

  16. Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., Perdikaris, P.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Casenave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casenave, F., Akkari, N., Ryckelynck, D. (2020). Reduced Order Modeling Assisted by Convolutional Neural Network for Thermal Problems with Nonparametrized Geometrical Variability. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1229. Springer, Cham. https://doi.org/10.1007/978-3-030-52246-9_17

Download citation

Publish with us

Policies and ethics