Skip to main content

Demonstrating Advanced Machine Learning and Neuromorphic Computing Using IBM’s NS16e

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1228))

Included in the following conference series:

Abstract

The human brain can be viewed as an extremely power-efficient biological computer. As such, there have been many efforts to create brain-inspired processing systems to enable advances in low-power data processing. An example of brain-inspired processing architecture is the IBM TrueNorth Neurosynaptic System, a Spiking Neural Network architecture for deploying ultra-low power machine learning (ML) models and algorithms. For the first time ever, an advanced scalable computing architecture was demonstrated using 16 TrueNorth neuromorphic processors containing in aggregate over 16 million neurons. This system, called the NS16e, was used to demonstrate new ML techniques including the exploitation of optical and radar sensor data simultaneously, while consuming a fraction of the power compared to traditional Von Neumann computing architectures. The number of applications that have requirements for computing architectures that can operate in size, weight and power-constrained environments continues to grow at an outstanding pace. These applications include processors for vehicles, homes, and real-time data exploitation needs for intelligence, surveillance, and reconnaissance missions. This research included the successful exploitation of optical and radar data using the NS16e system. Processing performance was assessed, and the power utilization was analyzed. The NS16e system never used more than 15 W, with the contribution from the 16 TrueNorth processors utilizing less than 5 W. The image processing throughput was 16,000 image chips per second, corresponding to 1,066 image chips per second for each watt of power consumed.

Received and approved for public release by the Air Force Research Laboratory (AFRL) on 11 June 2019, case number 88ABW-2019-2928. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of AFRL or its contractors. This work was partially funded under AFRL’s Neuromorphic - Compute Architectures and Processing contract that started in September 2018 and continues until June 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mead, C.: Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  2. Rajendran, B., Sebastian, A., Schmuker, M., Srinivasa, N., Eleftheriou, E.: Low-power neuromorphic hardware for signal processing applications (2019). https://arxiv.org/abs/1901.03690

  3. Barnell, M., Raymond, C., Capraro, C., Isereau, D., Cicotta, C., Stokes, N.: High-performance computing (HPC) and machine learning demonstrated in flight using Agile Condor®. In: IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA (2018)

    Google Scholar 

  4. Esser, S.K., Merolla, P., Arthur, J.V., Cassidy, A.S., Appuswamy, R., Andreopoulos, A., et al.: CNNs for energy-efficient neuromorphic computing. In: Proceedings of the National Academy of Sciences, p. 201604850, September 2016. https://doi.org/10.1073/pnas.1604850113

  5. R.F. Service: The brain chip. In: Science, vol. 345, no. 6197, pp. 614–615 (2014)

    Google Scholar 

  6. Cassidy, A.S., Merolla, P., Arthur, J.V., Esser, S.K., Jackson, B., Alvarez-Icaza, R., Datta, P., Sawada, J., Wong, T.M., Feldman, V., Amir, A., Rubin, D.B.-D., Akopyan, F., McQuinn, E., Risk, W.P., Modha, D.S.: Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–10, 4–9 August 2013

    Google Scholar 

  7. U.S. Geological Survey: Landsat Data Access (2016). http://landsat.usgs.gov/Landsat_Search_and_Download.php

  8. Raymond, C., Barnell, M., Capraro, C., Cote, E., Isereau, D.: Utilizing high-performance embedded computing, agile condor®, for intelligent processing: an artificial intelligence platform for remotely piloted aircraft. In: 2017 IEEE Intelligent Systems Conference, London, UK (2017)

    Google Scholar 

  9. Modha, D.S., Ananthanarayanan, R., Esser, S.K., Ndirango, A., et al.: Cognitive computing. Commun. ACM 54(8), 62–71 (2011)

    Article  Google Scholar 

  10. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The SpiNNaker project. Proc. IEEE 102(5), 652–665 (2014)

    Article  Google Scholar 

  11. Schuman, C.D., Potok, T.E., Patton, R.M., Birdwell, J.D., Dean, M.E., Rose, G.S., Plank, J.S.: A survey of neuromorphic computing and neural networks in hardware. CoRR abs/1705.06963 (2017)

    Google Scholar 

  12. Dong, S., Zhu, L., Xu, D., Tian, Y., Huang, T.: An efficient coding method for spike camera using inter-spike intervals. In: IEEE DCC, March 2019

    Google Scholar 

  13. Tang, G., Shah, A., Michmizos, K.P.: Spiking neural network on neuromorphic hardware for energy-efficient unidimensional SLAM. CoRR abs/1903.02504. arXiv:1611.05141 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Barnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barnell, M. et al. (2020). Demonstrating Advanced Machine Learning and Neuromorphic Computing Using IBM’s NS16e. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1228. Springer, Cham. https://doi.org/10.1007/978-3-030-52249-0_1

Download citation

Publish with us

Policies and ethics