Skip to main content

Data Augmentation and Clustering for Vehicle Make/Model Classification

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1228))

Included in the following conference series:

Abstract

Vehicle shape information is very important in Intelligent Traffic Systems (ITS). In this paper, we present a way to exploit a training data set of vehicles released in different years and captured under different perspectives. Also the efficacy of clustering to enhance the make/model classification is presented. Both steps led to improved classification results and a greater robustness. Deeper convolutional neural network based on ResNet architecture has been designed for the training of the vehicle make/model classification. The unequal class distribution of training data produces an a priori probability. Its elimination, obtained by removing of the bias and through hard normalization of the centroids in the classification layer, improves the classification results. A developed application has been used to test the vehicle re-identification on video data manually based on make/model and color classification. This work was partially funded under the grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nafzi, M., Brauckmann, M., Glasmachers, T.: Vehicle shape and color classification using convolutional neural network. CoRR, abs/1905.08612, May 2019. http://arxiv.org/abs/1905.08612

  2. Dehghan, A., Masood, S.Z., Shu, G., Ortiz, E.G.: View independent vehicle make, model and color recognition using convolutional neural network. CoRR, abs/1702.01721 (2017). http://arxiv.org/abs/1702.01721

  3. Satar, B., Dirik, A.E.: Deep learning based vehicle make-model classification. CoRR, abs/1809.00953 (2018). http://arxiv.org/abs/1809.00953

  4. Boyle, J., Ferryman, J.: Vehicle subtype, make and model classification from side profile video. In: 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6, August 2015. https://doi.org/10.1109/AVSS.2015.7301783

  5. AbdelMaseeh, M., Badreldin, I., Abdelkader, M.F., El Saban, M.: Car make and model recognition combining global and local cues. In: 2012 21st International Conference on Pattern Recognition (ICPR), ICPR 2012, pp. 910–913, November 2013. doi.ieeecomputersociety.org/

    Google Scholar 

  6. Clady, X., Negri, P., Milgram, M., Poulenard, R.: Multi-class vehicle type recognition system, vol. 5064, pp. 228–239, July 2008. https://doi.org/10.1007/978-3-540-69939-2_22

  7. Ramnath, K., Sinha, S.N., Szeliski, R., Hsiao, E.: Car make and model recognition using 3D curve alignment. In: IEEE Winter Conference on Applications of Computer Vision, pp. 285–292, March 2014. https://doi.org/10.1109/WACV.2014.6836087

  8. Hsieh, J., Chen, L., Chen, D.: Symmetrical surf and its applications to vehicle detection and vehicle make and model recognition. IEEE Trans. Intell. Transp. Syst. 15(1), 6–20 (2014). https://doi.org/10.1109/TITS.2013.2294646

    Article  Google Scholar 

  9. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: 2013 IEEE International Conference on Computer Vision Workshops, pp. 554–561, December 2013. https://doi.org/10.1109/ICCVW.2013.77

  10. Llorca, D.F., Colás, D., Daza, I.G., Parra, I., Sotelo, M.A.: Vehicle model recognition using geometry and appearance of car emblems from rear view images. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 3094–3099, October 2014. https://doi.org/10.1109/ITSC.2014.6958187

  11. Munroe, D.T., Madden, M.G.: Multi-class and single-class classification approaches to vehicle model recognition from images (2005)

    Google Scholar 

  12. Pearce, G., Pears, N.: Automatic make and model recognition from frontal images of cars. In: 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 373–378, August 2011. https://doi.org/10.1109/AVSS.2011.6027353

  13. Petrovic, V., Cootes, T.F.: Analysis of features for rigid structure vehicle type recognition. In: Proceedings of the British Machine Vision Conference, BMVA, United Kingdom, vol. 2 (2004)

    Google Scholar 

  14. Prokaj, J., Medioni, G.: 3-D model based vehicle recognition. In: 2009 Workshop on Applications of Computer Vision (WACV), pp. 1–7, December 2009. https://doi.org/10.1109/WACV.2009.5403032

  15. Psyllos, A., Anagnostopoulos, C.N., Kayafas, E.: Vehicle model recognition from frontal view image measurements, vol. 33, pp. 142–151, Amsterdam, The Netherlands. Elsevier Science Publishers B.V., February 2011. https://doi.org/10.1016/j.csi.2010.06.005

  16. Sochor, J., Herout, A., Havel, J.: BoxCars: 3D boxes as CNN input for improved fine-grained vehicle recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3006–3015 (2016)

    Google Scholar 

Download references

Acknowledgment

– Victoria: Funded by the European Commission (H2020), Grant Agreement number 740754 and is for Video analysis for Investigation of Criminal and Terrorist Activities.

– Florida: Funded by the German Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Nafzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nafzi, M., Brauckmann, M., Glasmachers, T. (2020). Data Augmentation and Clustering for Vehicle Make/Model Classification. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1228. Springer, Cham. https://doi.org/10.1007/978-3-030-52249-0_24

Download citation

Publish with us

Policies and ethics