Skip to main content

Haptic Data Accelerated Prediction via Multicore Implementation

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1228))

Included in the following conference series:

Abstract

The next generation of 5G wireless communications will provide very high data-rates combined with low latency. Several applications in different research fields are planning to exploit 5G wireless communications to achieve benefits for own aims. Mainly, Teleoperations Systems (TS) expect to use this technology in order to obtain very advantages for own architecture. The goal of these systems, as implied by their name, is to provide to the user (human operator) the feeling of presence in the remote environment where the teleoperator (robot) exists. This aim can be achieved thanks to the exchange of a thousand or more haptic data packets per second to be transmitted between the master and the slave devices. Since Teleoperation Systems are very sensitive to delays and data loss, TS challenge is to obtain low latency and high reliability in order to improve Quality of Experience (QoE) for the users in real-time communications. For this reason a data compression and reduction are required to ensure good system stability. A Predictive-Perceptive compression model based on prediction error and human psychophysical limits has been adopted to reduce data size. However, the big amount of Haptic Data to be processed requires very large times to execute their compression. Due to this issue a parallel strategy and implementation have been proposed with related experimental results to confirm the gain of performance in time terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agiwal, M., Roy, A., Saxena, N.: Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 18(3), 1617–1655 (2016)

    Article  Google Scholar 

  2. Wu, T., Rappaport, T.S., Collins, C.M.: Safe for generations to come: considerations of safety for millimeter waves in wireless communications. IEEE Microwave Mag. 16(2), 65–84 (2015)

    Article  Google Scholar 

  3. de Mattos, W.D., Gondim, P.R.L.: M-health solutions using 5G networks and M2M communications. IT Prof. 18(3), 24–29 (2016)

    Article  Google Scholar 

  4. Antonakoglou, K., Xu, X., Steinbach, E., Mahmoodi, T., Dohler, M.: Toward haptic communications over the 5G tactile internet. IEEE Commun. Surv. Tutor. 20(4), 3034–3059 (2018)

    Article  Google Scholar 

  5. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993)

    Article  Google Scholar 

  6. Cuomo, S., Farina, R., Galletti, A., Marcellino, L.: An error estimate of Gaussian recursive filter in 3Dvar problem. In: 2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014, art. no. 6933068, pp. 587–595 (2014)

    Google Scholar 

  7. De Luca, P., Galletti, A., Giunta G., Marcellino, L., Raei, M.: Performance analysis of a multicore implementation for solving a two-dimensional inverse anomalous diffusion problem. In: Proceedings of NUMTA2019, The 3rd International Conference and Summer School. Lecture Notes in Computer Science (2019)

    Google Scholar 

  8. De Luca, P., Galletti, A., Ghehsareh, H.R., Marcellino, L., Raei, M.: A GPU-CUDA framework for solving a two-dimensional inverse anomalous diffusion problem. In: Advances in Parallel Computing. IOS Press (2020)

    Google Scholar 

  9. De Luca, P., Fiscale, S., Landolfi, L., Di Mauro, A.: Distributed genomic compression in mapreduce paradigm. In: Montella R., Ciaramella A., Fortino G., Guerrieri A., Liotta A. (eds) Internet and Distributed Computing Systems, IDCS 2019. Lecture Notes in Computer Science, vol. 11874. Springer, Cham (2019)

    Google Scholar 

  10. Cuomo, S., De Michele, P., Galletti, A., Marcellino, L.: A GPU parallel implementation of the local principal component analysis overcomplete method for DW image denoising. In: Proceedings - IEEE Symposium on Computers and Communications, 2016-August, art. no. 7543709, pp. 26–31 (2016)

    Google Scholar 

  11. Cuomo, S., Galletti, A., Marcellino, L.: A GPU algorithm in a distributed computing system for 3D MRI denoising. In: 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 557–562. IEEE (2015)

    Google Scholar 

  12. De Luca, P., Galletti, A., Marcellino, L.: A Gaussian recursive filter parallel implementation with overlapping. In: 2019 15th International Conference on Signal Image Technology & Internet Based Systems. IEEE (2019)

    Google Scholar 

  13. Damore, L., Campagna, R., Galletti, A., Marcellino, L., Murli, A.: A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis. Inverse Prob. 28(2), 025007 (2012)

    Article  MathSciNet  Google Scholar 

  14. Nasir, Q., Khalil, E.: Perception based adaptive haptic communication protocol (PAHCP). In: 2012 International Conference on Computer Systems and Industrial Informatics (2012)

    Google Scholar 

  15. You, Y., Sung, M.Y.: Haptic data transmission based on the prediction and compression. In: 2008 IEEE International Conference on Communications (2008)

    Google Scholar 

  16. Steinbach, E., Hirche, S., Kammerl, J., Vittorias, I., Chaudhari, R.: Haptic data compression and communication. IEEE Sig. Process. Mag. 28(1), 87–96 (2011)

    Article  Google Scholar 

  17. Nitsch, V., Farber, B., Geiger, L., Hinterseer, P., Steinbach, E.: An experimental study of lossy compression in a real telepresence and teleaction system. In: 2008 IEEE International Workshop on Haptic Audio visual Environments and Games (2008)

    Google Scholar 

  18. Weber, E., De Pulsu, R.: Annotationes Anatomicae et Physiologicae. In: Koehler, C.F. (ed.) Auditu et Tactu, Leipzig, Germany (1834). https://books.google.co.uk/books?id=bdI-AAAAYAAJ

  19. Sakr, N., Georganas, N.D., Zhao, J., Shen, X.: Motion and force prediction in haptic media. In: 2007 IEEE International Conference on Multimedia and Expo (2007)

    Google Scholar 

  20. Shanmugan, K.S., Breipohl, A.M.: Random Signals: Detection, Estimation, and Data Analysis. Wiley, New York (1988)

    Google Scholar 

  21. https://openmp.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale De Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Luca, P., Formisano, A. (2020). Haptic Data Accelerated Prediction via Multicore Implementation. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1228. Springer, Cham. https://doi.org/10.1007/978-3-030-52249-0_8

Download citation

Publish with us

Policies and ethics