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Abstract. In this paper, we present a linear and reversible language
with inductive and coinductive types, together with a Curry-Howard
correspondence with the logic #MALL: linear logic extended with least
and greatest fixed points allowing inductive and coinductive statements.
Linear, reversible computation makes an important sub-class of quantum
computation without measurement. In the latter, the notion of purely
quantum recursive type is not yet well understood. Moreover, models
for reasoning about quantum algorithms only provide complex types for
classical datatypes: there are usually no types for purely quantum objects
beside tensors of quantum bits. This work is a first step towards under-
standing purely quantum recursive types.
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1 Introduction

Computation and logic are two faces of the same coin. For instance, consider a

proof s of A — B and a proof ¢ of A. With the log- 5 t
ical rule Modus-Ponens one can construct a proof of : :
B: Fig.1 features a graphical presentation of the cor- A—-B A
responding proof. Horizontal lines stand for deduction B

steps—they separate conclusions (below) and hypothe-
ses (above). These deduction steps can be stacked verti- ~ Fig. 1. Modus-Ponens
cally up to axioms in order to describe complete proofs.
In Fig. 1 the proofs of A and A — B are symbolized with vertical ellipses. The
ellipsis annotated with s indicates that s is a complete proof of A — B while ¢
stands for a complete proof of A.

This connection is known as the Curry-Howard correspondence [4,8]. In this
general framework, types correspond to formulas and programs to proofs, while
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program evaluation is mirrored with proof simplification (the so-called cut-
elimination). The Curry-Howard correspondence formalizes the fact that the
proof s of A — B can be regarded as a function—parametrized by an argu-
ment of type A—that produces a proof of B whenever it is fed with a proof
of A. Therefore, the computational interpretation of Modus-Ponens corresponds
to the application of an argument (i.e. t) of type A to a function (i.e. s) of
type A — B. When computing the corresponding program, one substitutes the
parameter of the function with ¢ and get a result of type B. On the logical side,
this corresponds to substituting every axiom introducing A in the proof s with
the full proof ¢t of A. This yields a direct proof of B without any invocation of
the “lemma” A — B.

Paving the way toward the verification of critical softwares, the Curry-
Howard correspondence provides a versatile framework. It has been used to mir-
ror first and second-order logics with dependent-type systems [3,10], separation
logics with memory-aware type systems [9,13], resource-sensitive logics with dif-
ferential privacy [6], logics with monads with reasoning on side-effects [11,17],
etc.

This paper is concerned with the case of reversible computation, a sub-class
of pure quantum computation. In general quantum computation, one has access
to a co-processor holding a “quantum” memory. This memory consists of “quan-
tum” bits having a peculiar property: their state cannot be duplicated, and
the operations one can perform on them are unitary, reversible operations. The
co-processor comes with an interface to which one can send instructions to allo-
cate, update or read quantum registers. Quantum memories can be used to solve
classical problems faster than with purely conventional means. Quantum pro-
gramming languages are nowadays pervasive [5] and several formal approaches
based on logical systems have been proposed to relate to this model of computa-
tion [12,14,16]. However, all of these languages rely on a purely classical control-
flow: quantum computation is reduced to describing a list of instructions—a
quantum circuit—to be sent to the co-processor. In particular, in this model
operations performed on the quantum memory only act on quantum bits and
tensors thereof, while the classical computer enjoys the manipulation of any kind
of data with the help of rich type systems.

This extended abstract aims at proposing a type system featuring inductive
and coinductive types for a purely reversible language, first step towards a rich
quantum type system. We base our study on the approach presented in [15]. In
this model, reversible computation is restricted to two main types: the tensor,
written a ® b and the co-product, written a ® b. The former corresponds to
the type of all pairs of elements of type a and elements of type b, while the
latter represents the disjoint union of all elements of type a and elements of
type b. For instance, a bit can be typed with 1 & 1, where 1 is a type with only
one element. The language in [15] offers the possibility to code isos—reversible
maps—with pattern matching. An iso is for instance the swap operation, typed
with a ® b < b ® a. The language also permits higher-order operations on isos,
so that an iso can be parametrized by another iso, and is extended with lists
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Fig. 2. Rules for “MALL.

(denoted with [a]). For instance, one can type a map operation acting on all
the elements of a list with (@ < b) — ([a] < [b]). However, if [15] hints at an
extension toward pure quantum computation, the type system is not formally
connected to any logical system.

The main contribution of this work is a Curry-Howard correspondence for a
purely reversible typed language in the style of [15]. We capitalize on the logic
HMALL [1,2]: an extension of the additive and multiplicative fragment of linear
logic with least and greatest fixed points allowing inductive and coinductive
statements. This logic contains both a tensor and a co-product, and its strict
linearity makes it a good fit for a reversible type system.

2 Background on #MALL

The logic #MALL [1,2] is an extension of the additive and multiplicative frag-
ment of linear logic [7]. The syntax of linear logic is extended with the formulas
uX.A and its dual vX.A (where X is a type variable occuring in A), which can
be understood at the least and greatest fixed points of the operator X +— A.
These permit inductive and coinductive statements. We are only interested in a
fragment of #MALL which contains the tensor, the plus, the unit and the p and
v connectives. Note that our system only deals with closed formulas. Our syntax
of formulasis A,B:=1 | X | A®B | A®@B | pX.A | vX.A. The
derivation rules are shown in Fig. 2. They defined a binary relation A - I" on set
of formulas defined inductively. For each rule the assumptions are above the line
while the conclusion is under. In the rules, the comma stands for the disjoint
union: observe that each formula has to be used exactly once and cannot be
duplicated or erased. In #UMALL one can for instance define the type of natural
numbers as uX.1 @ X, of lists of type A as uX.1 ® (A ® X) and of streams of
type A as vX.A® X.

We consider proofs to be potentially non-well-founded derivation trees: they
are not necessarily finite as we can for instance consider the formula puX.X
and apply the rule ug an infinite number of times. Among non well-founded
proof-objects we distinguish the regular derivation trees that we call circular
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Fig.3. Circular representation of Fig. 4. Degenerated proof.

proofs.

pre-proofs. These trees can then be represented in a compact manner, see Fig. 3.
One problem with such a proof-system is to determine whether or not infinite
derivations are indeed proofs. Indeed, if every infinite derivation is accepted as
a proof, it would be possible to prove any formula F, as shown in Fig. 4.

To answer this problem, #MALL comes with a validity criterion for deriva-
tions. It roughly says that a derivation is valid if, in every infinite branch of the
derivation, there exists an infinite number of rules py or an infinite number of
rules vgr. The intuition is that since uX.A formulas represent least fixed points,
their objects are finite. An infinite number of rule pr would mean producing
an infinite object, which is not possible. On the other hand, we can explore an
arbitrarily large object as input with the rule ur,. For the other case, since vX. A
formulas represent greatest fixed points, their object are infinite. We therefore
want to ensure that we can produce infinite objects: hence the infinite number
of rules vgr. This criterion can be understood in a more operational way as a
requirement for productivity.

3 Owur Language

Our language is based on the one presented in [15]. We build on the reversible
part of the paper by extending the language to support both a more general
rewriting system and inductive and coinductive types. The language is defined
by layers. Terms and types are presented in Table 1, while typing derivations,
based on #MALL can be found in Tables2 and 3. The language consists of the
following pieces.

Basic Type. They are first-order and typed with base types. The constructors
inj, and inj, represent the choice between either the left or right-hand side
of a type of the form A @ B; the constructor (,) builds pairs of elements (with
the corresponding type constructor ®); fold and pack respectively represent
inductive and coinductive structure for the types uX.A and v X.A. A value can
serve both as a result and as a pattern in the clause of an iso. Generalized
patterns are used as special patterns: v, : A can match any value of type A.
Terms are expressions at “surface-level”: applying an iso always gives a term,
whereas it is an expression only when the argument is a generalized pattern.
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Table 1. Terms and types

(Base types) AB:=1| AdB | A®B | uX.A | vX.A
(Isos, first-order) ax= A< B

(Isos, higher-order) Ti= a1 — - —an — Q

(Values) vi= () | z | inj, v | inj,. v | (vi,v2) |

foldv | packw

(Generalized pattern) vg = () | @ | (vg,Vg) | wvg | letvg =vg in vg
fold vy | pack vg

(Expressions) en= vg | inj,. e | inj, e | (e,e) |
folde | packe | letvg=vg ine

(Tsos) wu=d{e1t = el | ... | en & e} | Mw |
pufw | f | wiws | invw

(Terms) tux= () | « | inj; t | inj,. ¢t | (t1,t2) |
foldt | packt | wt | letvg=vgint

First-Order Isos. An iso of type a acts on terms of base types. An iso
is a function of type A < B, defined as a set of clauses of the form
{ex < e | ... | en < e} The tokens e; and €} in the clauses are
expressions. Compared to the original language in [15], we allow general expres-
sions both on the left and on the right of a clause. In order to apply an iso to
a term, the iso must be of type A <> B and the term of type A. In the typing
rules of isos, the 0D predicate (taken from [15] and not described in this paper)
syntactically enforces the exhaustivity and non-overlapping conditions that the
left-hand-side and right-hand-side of clauses should satisfy. Exhaustivity for an
iso{e; «— €} | ... | en < €} of type A — B means that the expressions on
the left (resp. on the right) of the clauses describe all possible values for the type
A (resp. the type B). Non-overlapping means that two expressions cannot match
the same value. For instance, the left and right injections inj; e and inj, e’ are
non-overlapping while a pattern v, is always exhaustive.

Higher-Order Isos. An iso of type T manipulate other isos as basic blocks.
Since isos represent closed computations, iso-variable are non-linear and can be
duplicated at will while term-variable are linear. The constructions Af.w and
w1 we represent respectively the abstraction of a function and the application of
an iso to another. The construction pg.w represents the creation of a recursive
function, rewritten as w[g := pg.w| by the operational semantics. The typing rule
for pg.w has a productivity criterion. Indeed, since isos can be non-terminating
(because of coinduction), productivity is important to ensure that we work with
total functions. These checks are crucial to make sure that our isos are indeed
bijections in the mathematical sense. The construction inv w corresponds to the
inversion of the iso w. If w is of type A < B then inv w is of type B < A.
Finally, our language is equipped with a rewrite system (—) on terms. The
evaluation of an iso applied to an argument works with pattern-matching. The
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Table 2. Typing of terms and expressions
AUk t: A AW t: B
00k ():l z:APF.z: A AWheinj,t:A®B AWtcinj . t:A®B
AWkt A AWk ta: B AUt AX — vX.A]

Ay, AW e (t1,t2) : A® B AW Fpackt:vX.A
Uhbow:A—B AUl t: A AUk t: AX « pX. A
AWbk.wt: B AU k. foldt: uX.A

I'iUkevg, 1 A ApUhevg, 1 A I''As; Wb t: B
A1, Ao ¥ e letvg, =vg, int: B

Table 3. Typing of isos

AW bkeer: A ... ApWhee,: A 0Da{e1,...,en}
ApWhkeei:B ... AyWhkeel,: B 0Dg{el,...,ent
Uhb,{e1r & el | ... | en < e,}: A< B.

U frabyw:T Ubh,wi:ia—T Uk, w:a

Uk, AMfw:a—T U frabe, fra Uk, wiws : T
Wb, w: T
Ubk,invw:T

U fiatpw:ar — - — a, =« pf.w is productive

Vb, pfw:ar — - —ap =«

non-overlapping and exhaustivity conditions guarantee subject-reduction (see
Proposition 3.1).

Example 3.1. Encoding of the isomorphism map in our language, where [] is
the empty list and :: is the list construction. The iso map is of type (A < B) —
([A] < [B]) where [A] is the type of lists of type A. This iso takes an iso of type
A < B as argument and apply it to each element of the list given as argument:

)\f.ug.{gl]::t = E} B (g t)} : (Ao B) = [A] = [B)).

Example 3.2. We can define the iso of type : A® (B@ C) « C ® (A® B) as

inj; a < inj,. inj; a
inj, inj; b < inj, inj, b ».

inj, inj, ¢ < inj, c

Remark 3.1. In our two examples, the left and right-hand side of the < on each
function respect both the criteria of exhaustivity—every-value of each type is
being covered by at least one expression—and non-overlapping—no two expres-
sions cover the same value. Both isos are therefore bijections.
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Property 3.1. The language features subject reduction: If +t: A andt — t
then we have ' : A. Moreover, it enjoys confluence: Let —* be the reflexive,
transitive closure of —. If t —* t1 and t —* ty then there exists t3 such that
tl —* t3 and tg —* tg. O

We conjecture that well-typed isos are indeed isomorphisms:

Conjecture 3.1. Forallw: A< B,v: A andu: B then ((inv w)ow) v =% v
and (woinvw) u —* u.

4 Towards Curry-Howard

An iso Fw : A < B corresponds to both a computation sending a value of type
A to a result of type B and a computation sending a value of type B to a result
of type A. We can mechanically translate such an iso to a pair of derivations
7, in BMALL | where 7 is a proof of A+ B and 7 is a proof of B - A. This
mechanical translation constructs circular pre-proofs, as discussed in Sect. 2. We
however still need to show that the obtained derivations respect the validity
criterion for circular proof.

Once proven, we would obtain a static correspondence between programs
and proofs. We would however still need to show that this entails a dynamic
correspondence between the evaluation procedure of our language and the cut-
elimination procedure of “MALL, For that, we would need to make sure that the
proofs we obtain are indeed isomorphisms, meaning that if we cut the aforemen-
tioned proofs 7 and 7, performing the cut-elimination procedure would give
either the identity on A or the identity on B.

Conjecture 4.1. Validity of proofs. If Fw: A < B then the PMALL deriya-
tions : AF B and 7 : B A of w are valid.
Isomorphism of Proofs. Provided that the above holds, we moreover have

rt rt

T s
g BFA _ArB . AFB _ BFA . .
AFA Y. AF A BF B ~BFB"

d

Simulation of Evaluation. Provided that t is a value and v is a normal form,
if wt —*wv, if T is the proof corresponding to w t, and if 7' is the proof corre-
sponding to v, then m —* 7’ with the cut-elimination procedure.

Example 4.1. Consider the iso that, given an iso f and a list [z, 22,..., 2]
returns the list [f 1, (inv f) 22, f 3, (inv f) 24,...] written as:
Hg-Mf. { et Uf h): (g (inv f) )t)} HA e A) = (A= 4D (1)

We define the two mutually recursive proofs m and mo by m = II (¢, m2) and
my = I(¢p1,m) where ¢y and 1)y correspond to the isos f and inv f. The
proof associated with the iso in Eq. (1) is 1. The proof IT(¢1, ¢2) is shown in
Fig. 5.
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Fig. 5. Proof corresponding to Example 4.1.

5 Conclusion

We presented a higher-order, linear, reversible language with inductive and coin-
ductive types together with an interpretation of programs into derivations in the
logic #MALL_ This work is still in progress: A number of proofs still need to be
completed. After completing the proofs of our current conjectures, we want to
extend our language to linear combinations of terms in order to study purely
quantum recursive types and generalized quantum loops: in [15], lists are the only
recursive type which is captured and recursion is terminating. The logic #MALL
would help providing a finer understanding of termination and non-termination.
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