Skip to main content

A Blockchain-Based Approach for Cross-Ledger Reconciliation

  • Conference paper
  • First Online:
Blockchain and Applications (BLOCKCHAIN 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1238))

Included in the following conference series:

Abstract

Technologies available to implement cross-ledger reconciliation processes are centralized due to the strong necessity of consistency. These solutions fail to guarantee data integrity since data and business rules are handled separately, and the data is processed in batch, delaying the results. This article proposes a decentralized approach to the reconciliation processes using a private Blockchain based on the Ethereum platform. Consistency will be assured by using an Authority Round algorithm and the data will be processed in real-time, showing the results as soon as the transactions are processed. Since the records in the Blockchain are immutable, all the transactions will be traceable, allowing auditability and maintaining the link between original and generated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betts, D., Dominguez, J., Melnik, G., Simonazzi, F., Subramanian, M.: Exploring CQRS and event sourcing: a journey into high scalability, availability, and maintainability with Windows Azure. Microsoft Patterns & Practices (2013)

    Google Scholar 

  2. Bonér, J., Farley, D., Kuhn, R., Thompson, M.: The reactive manifesto (2014). http://www.reactivemanifesto.org/ [Dostopano: 21. 08. 2017]

  3. Parity Wiki. https://wiki.parity.io/Aura

  4. Chinchilla, C.: (2019). RLP https://github.com/ethereum/wiki/wiki/RLP

  5. de Vilaca Burgos, A., de Oliveira Filho, J.D., Suares, M.V.C., de Almeida, R.S.: Distributed ledger technical research in Central Bank of Brazil. Technical report, Working Paper (2017)

    Google Scholar 

  6. Dixon, J.: Pentaho Open Source Business Intelligence Platform Technical White Paper. Pentaho Corporation, Orlando (2005)

    Google Scholar 

  7. Fielding, R.T., Taylor, R.N.: Architectural styles and the design of network-based software architectures, vol. 7. Doctoral dissertation, University of California, Irvine (2000)

    Google Scholar 

  8. Fowler, M.: Event sourcing, 18 December 2005

    Google Scholar 

  9. Blockchain based data provenance and integrity for secure IoT environments. In: Proceedings of the 1st Workshop on Blockchain-Enabled Networked Sensor Systems (BlockSys 2018), pp. 13–18. ACM, New York. http://doi.acm.org/10.1145/3282278.3282281

  10. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001). https://doi.org/10.1007/s102070100002

    Article  Google Scholar 

  11. Izquierdo, M.A.J.: EIP 897: ERC delegate proxy (2018). https://eips.ethereum.org/EIPS/eip-897

  12. Morgan, P.: Quorum Whitepaper. JP Morgan Chase, New York (2016)

    Google Scholar 

  13. Approach for data accountability and provenance tracking. In: Proceedings of the 12th International Conference on Availability, Reliability and Security (ARES 2017), p. 10. ACM, New York. http://doi.acm.org/10.1145/3098954.3098958

  14. Tuarob, S., Strong, R., Chandra, A., Tucker, C.S.: Discovering discontinuity in big financial transaction data. ACM Trans. Manag. Inf. Syst. 9(1), 26 (2018). http://doi.acm.org/10.1145/3159445

    Article  Google Scholar 

  15. Turin, A.M.: On computable numbers, with an application to the entschei-dungs problem. Proc. London Math. Soc. s2–42(1), 230–265 (1937). http://doi.acm.org/10.1112/plms/s2-42.1.230

    Article  Google Scholar 

  16. Vogelsteller, F.: (2015). web3. js. https://github.com/ethereum/web3.js

  17. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum project yellow paper, vol. 151, pp. 1–32 (2014)

    Google Scholar 

  18. Markus, M.L., Tanis, C., Fenema, P.C.V.: Multisite enterprise resource planning implementation. Commun. ACM 43(4), 42–46 (2000). http://doi.acm.org/10.1145/332051.332068

    Article  Google Scholar 

  19. Faq, S.: https://github.com/ethereum/wiki/wiki/Sharding-FAQ

  20. Fintech, Banks: Spunta the sector blockchain passes test of annual data. https://www.abi.it/DOC

  21. Sun, H., Huang, Y.: Distributed ledger technology and economic contract innovation. In: Proceedings of the 3rd International Conference on Crowd Science and Engineering (2018). Article 15. https://dl.acm.org/doi/abs/10.1145/3265689.3267929

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriano Ribeiro , Luiz Santos , Alexandre Furtado , Bruna Schroder , Daniel Vidaletti or Mariangela Vanzin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ribeiro, A., Santos, L., Furtado, A., Schroder, B., Vidaletti, D., Vanzin, M. (2020). A Blockchain-Based Approach for Cross-Ledger Reconciliation. In: Prieto, J., Pinto, A., Das, A., Ferretti, S. (eds) Blockchain and Applications. BLOCKCHAIN 2020. Advances in Intelligent Systems and Computing, vol 1238. Springer, Cham. https://doi.org/10.1007/978-3-030-52535-4_6

Download citation

Publish with us

Policies and ethics