Skip to main content

Integration of New Technologies and Alternative Methods in Laboratory-Based Scenarios

  • Conference paper
  • First Online:
Cross Reality and Data Science in Engineering (REV 2020)

Abstract

In this study, we report a preliminary requirements analysis to recognize needs and possibilities for integrating new technologies and methods for lab-based learning in the field of Industry 4.0 and Internet of Things. To this aim, different scenarios, such as real, remote and virtual labs, are considered to be addressable within an integrated learning environment that focuses on alternative methods (i.e. Serious Games, Self-Regulated and Collaborative Learning) and new technologies (i.e. Open Badges, Mixed Reality and Learning Analytics).

To support the design of the laboratory-based learning environment, qualitative interviews were conducted with both expert lecturers and relevant students in the field of engineering, to provide complementary perspectives. These interviews were carried out to analyze the requirements, and to identify possible benefits that relevant stakeholders expect by using these teaching and learning methods and technologies. A qualitative content analysis has been started on the interviews to define which is the perception of the new technologies and teaching methods. The different points of view about technologies and methods coming from expert lecturers’ and relevant students’ interviews are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2019-2020/#GC3.

References

  1. Feisel, L.D., Rosa, A.J.: The role of the laboratory in undergraduate engineering education. J. Eng. Educ. 94(1), 121–130 (2005)

    Article  Google Scholar 

  2. Antsaklis, P., Basar, T., DeCarlo, R., McClamroch, N.H., Spong, M., Yurkovich, S.: Report on the NSF/CSS workshop on new directions in control engineering education. IEEE Control Syst. Mag. 19(5), 53–58 (1999)

    Article  Google Scholar 

  3. Lensing, K., Friedhoff, J.: Designing a curriculum for the Internet-of-Things-Laboratory to foster creativity and a maker mindset within varying target groups. Procedia Manuf. 23(2017), 231–236 (2018)

    Article  Google Scholar 

  4. Nedic, Z., Machotka, J., Nafalski, A.: Remote laboratories versus virtual and real laboratories. In: Proceedings - Frontiers in Education Conference FIE, February 2003, vol. 1, pp. T3E1–T3E6 (2003)

    Google Scholar 

  5. Tvenge, N., Martinsen, K.: Integration of digital learning in industry 4.0. Procedia Manuf. 23(2017), 261–266 (2018)

    Article  Google Scholar 

  6. Mincu, M.E.: Teacher quality and school improvement: what is the role of research? Oxford Rev. Educ. 41(2), 253–269 (2015)

    Article  Google Scholar 

  7. Heradio, R., De La Torre, L., Galan, D., Cabrerizo, F.J., Herrera-Viedma, E., Dormido, S.: Virtual and remote labs in education: a bibliometric analysis. Comput. Educ. 98, 14–38 (2016)

    Article  Google Scholar 

  8. Brinson, J.R.: Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: a review of the empirical research. Comput. Educ. 87, 218–237 (2015)

    Article  Google Scholar 

  9. Orduña, P., Rodriguez-Gil, L., Garcia-Zubia, J., Angulo, I., Hernandez, U., Azcuenaga, E.: Increasing the value of remote laboratory federations through an open sharing platform: LabsLand. In: Auer, M., Zutin, D. (eds.) Online Engineering & Internet of Things, pp. 859–873. Springer, Cham (2018)

    Chapter  Google Scholar 

  10. Hummel, H.G.K., Joosten-ten Brinke, D., Nadolski, R.J., Baartman, L.K.J.: Content validity of game-based assessment: case study of a serious game for ICT managers in training. Technol. Pedagog. Educ. 26(2), 225–240 (2017)

    Article  Google Scholar 

  11. Lewis, M.A., Maylor, H.R.: Game playing and operations management education. Int. J. Prod. Econ. 105(1), 134–149 (2007)

    Article  Google Scholar 

  12. Van Der Zee, D.J., Holkenborg, B., Robinson, S.: Conceptual modeling for simulation-based serious gaming. Decis. Support Syst. 54(1), 33–45 (2012)

    Article  Google Scholar 

  13. Annetta, L., Mangrum, J., Holmes, S., Collazo, K., Cheng, M.T.: Bridging realty to virtual reality: investigating gender effect and student engagement on learning through video game play in an elementary school classroom. Int. J. Sci. Educ. 31(8), 1091–1113 (2009)

    Article  Google Scholar 

  14. Hess, T., Gunter, G.: Serious game-based and nongame-based online courses: learning experiences and outcomes. Br. J. Educ. Technol. 44(3), 372–385 (2013)

    Article  Google Scholar 

  15. Susi, T., Johannesson, M., Backlund, P.: Serious games – an overview: Technical report, HS-IKI-TR-07-001 (2006)

    Google Scholar 

  16. Gee, J.P., Shaffer, D.W.: Looking where the light is bad: video games and the future of assessment. Phi Delta Kappa Int. EDge 6(1), 3–19 (2010)

    Google Scholar 

  17. Weinert, F.E.: Selbstgesteuertes Lernen als Voraussetzung, Methode und Ziel des Unterrichts. Unterrichtswissenschaft 10(2), 99–110 (1982)

    Google Scholar 

  18. Breuer, J.: Lernmethoden. Artikel, p. 87 (2000)

    Google Scholar 

  19. Dyrna, J., Riedel, J., Schulze-Achatz, S.: Wann ist Lernen mit digitalen Medien (wirklich) selbstgesteuert? Ansätze zur Ermöglichung und Förderung von Selbststeuerung in technologieunterstützten Lernprozessen. In: Communities in New Media: Research on Knowledge Communities in Science, Business, Education and Public Administration - Proceedings of 21th Conference GeNeMe, pp. 155–166 (2018)

    Google Scholar 

  20. Deci, E.L., Ryan, R.M.: Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung für die Pädagogik. Zeitschrift für Pädagogik 39(2), 223–238 (1993)

    Google Scholar 

  21. Ferdinand, P.: Selbstgesteuertes Lernen in den Naturwissenschaften - Eine Interventionsstudie zu den kognitiven und motivationalen Effekten eines Blended Learning Ansatzes. Kovac, Dr. Verlag, Hamburg (2007)

    Google Scholar 

  22. Sander, E., Ferdinand, P.: Empirische Befunde und pädagogische Chancen im Kontext selbstgesteuerten, experimentierenden Lernens in den Naturwissenschaften. Empirische Pädagogik 27(1), 47–85 (2013)

    Google Scholar 

  23. Dillenbourg, P.: “What do you mean by collaborative leraning? In: Dillenbourg, P. (ed.) Collaborative Learning: Cognitive and Computational Approaches. Elsevier, Oxford (1999)

    Google Scholar 

  24. Laal, M., Ghodsi, S.M.: Benefits of collaborative learning. Procedia - Soc. Behav. Sci. 31(2011), 486–490 (2012)

    Article  Google Scholar 

  25. Tu, C.H.: On-line learning migration: from social learning theory to social presence theory in a CMC environment. J. Netw. Comput. Appl. 23(1), 27–37 (2000)

    Article  MathSciNet  Google Scholar 

  26. Mah, D.K., Bellin-Mularski, N., Ifenthaler, D.: Foundation of Digital Badges and Micro-credentials: Demonstrating and Recognizing Knowledge and Competencies, pp. 1–530. Springer, Cham (2016)

    Google Scholar 

  27. Muilenburg, L., Berge, Z. (eds.): Digital Badges in Education. Routledge, New York (2016)

    Google Scholar 

  28. Buchem, I.: Entwurfsmuster für digitale Kompetenznachweise auf Basis von Open Badges im Kontext virtueller Mobilität (Design patterns for digital competency credentials based on open badges in the context of virtual mobility). In: Proceedings der Pre-Conference-Workshops der 16, E-Learning Fachtagung Informatik Co-located with 16th e-Learning Conference of the German Computer Society (DeLFI 2018), Frankfurt, Germany, 10 September 2018, vol. 2250 (2018)

    Google Scholar 

  29. Carey, K.L., Stefaniak, J.E.: An exploration of the utility of digital badging in higher education settings. Educ. Technol. Res. Dev. 66(5), 1211–1229 (2018)

    Article  Google Scholar 

  30. Milgram, P., Kishimo, F.: A taxonomy of mixed reality. IEICE Trans. Inf. Syst. 77(12), 1321–1329 (1994)

    Google Scholar 

  31. Brooks, F.P.: What’s real about virtual reality? IEEE Comput. Graph. Appl. 19(6), 16–27 (1999)

    Article  Google Scholar 

  32. Berg, L.P., Vance, J.M.: Industry use of virtual reality in product design and manufacturing: a survey. Virtual Reality 21(1), 1–17 (2017)

    Article  Google Scholar 

  33. Abulrub, A.-H.G., Attridge, A., Williams, M.A.: International journal of emerging technologies in learning. Int. J. Emerg. Technol. Learn. 6(4), 4–11 (2011)

    Article  Google Scholar 

  34. Vergara, D., Rubio, M., Lorenzo, M.: On the design of virtual reality learning environments in engineering. Multimodal Technol. Interact. 1(2), 11 (2017)

    Article  Google Scholar 

  35. Huang, J.M., Ong, S.K., Nee, A.Y.C.: Visualization and interaction of finite element analysis in augmented reality. CAD Comput. Aided Des. 84, 1–14 (2017)

    Article  Google Scholar 

  36. Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality. Found. Trends Hum.-Comput. Interact. 8(2–3), 73–272 (2014)

    Google Scholar 

  37. Orduña, P., Almeida, A., López-De-Ipiña, D., Garcia-Zubia, J.: Learning analytics on federated remote laboratories: tips and techniques. In: IEEE Global Engineering Education Conference EDUCON, April 2014, pp. 299–305 (2014)

    Google Scholar 

  38. Long, P., Siemens, G.: Penetrating the fog: analytics in learning and education. Educ. Rev. 46(5), 30–32 (2011)

    Google Scholar 

  39. Ifenthaler, D.: The SAGE Encyclopedia of Educational Technology. SAGE Publications Inc., Thousand Oaks (2015)

    Google Scholar 

  40. Broisin, J., Venant, R., Vidal, P.: Learning analytics for learner awareness in remote laboratories dedicated to computer education. In: CEUR Workshop Proceedings, April 2016, vol. 1596, pp. 31–37 (2016)

    Google Scholar 

  41. Ochoa, X.: Multimodal learning analytics. In: Handbook of Learning Analytics, pp. 129–141 (2017)

    Google Scholar 

  42. Mayring, P.: Qualitative content analysis: theoretical foundation, basic procedures and software solution (free download via Social Science Open Access Repository SSOAR). In: Forum Qual. Sozialforschung/Forum Qualitative Social Research (2014)

    Google Scholar 

Download references

Acknowledgement

This research was funded by German Ministry of Education and Research BMBF, grant numbers 16DHB2112 (HFT Stuttgart), 16DHB2116 (University of Parma) and 16DHB2115 (IWM Koblentz), and was developed within the project DigiLab4U (https://digilab4u.com/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Reverberi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burghardt, M., Ferdinand, P., Pfeiffer, A., Reverberi, D., Romagnoli, G. (2021). Integration of New Technologies and Alternative Methods in Laboratory-Based Scenarios. In: Auer, M., May, D. (eds) Cross Reality and Data Science in Engineering. REV 2020. Advances in Intelligent Systems and Computing, vol 1231. Springer, Cham. https://doi.org/10.1007/978-3-030-52575-0_40

Download citation

Publish with us

Policies and ethics