l‘)

Check for
updates

Short Paper - Taming the Shape Shifter:
Detecting Anti-fingerprinting Browsers

Babak Amin Azad'®™)  Oleksii Starov?, Pierre Laperdrix?,
and Nick Nikiforakis!

! Stony Brook University, Stony Brook, USA
baminazad@cs.stonybrook.edu
2 Palo Alto Networks, Santa Clara, USA
3 CNRS / Univ. Lille / Inria, Lille, France

Abstract. When it comes to leaked credentials and credit card informa-
tion, we observe the development and use of anti-fingerprinting browsers
by malicious actors. These tools are carefully designed to evade detec-
tion, often by mimicking the browsing environment of the victim whose
credentials were stolen. Even though these tools are popular in the under-
ground markets, they have not received enough attention by researchers.
In this paper, we report on the first evaluation of four underground,
commercial, and research anti-fingerprinting browsers and highlight their
high success rate in bypassing browser fingerprinting. Despite their suc-
cess against well-known fingerprinting methods and libraries, we show
that even slightest variation in the simulated fingerprint compared to
the real ones can give away the presence of anti-fingerprinting tools. As
a result, we provide techniques and fingerprint-based signatures that can
be used to detect the current generation of anti-fingerprinting browsers.

1 Introduction

Major database hacks and personal information leaks have been the common
cyber news headline for the past couple of years. Haveibeenpwned', the website
that hosts the records of publicly known credential leaks, currently hosts 428
instances of credential leakage from different websites, including some highly
popular (e.g. Linkedin and Dropbox). The number of accounts affected by these
leaked credentials adds up to over 773 million accounts.

In a similar fashion, the online shopping industry has been the prime target
of attackers. In 2019, over 180,000 websites were successfully attacked by Mage-
cart hackers [11]. By implanting malicious JavaScript code on hacked websites,
attackers behind these operations steal credit card and payment information of
clients upon checkout. According to statistics from the security industry [11],
these attacks have so far affected more than 2 million users.

The stolen credentials and credit card information typically end up being
sold in bulk in the underground markets [30]. Verification and monetization of

! https://haveibeenpwned.com/.

© Springer Nature Switzerland AG 2020
C. Maurice et al. (Eds.): DIMVA 2020, LNCS 12223, pp. 160-170, 2020.
https://doi.org/10.1007/978-3-030-52683-2_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52683-2_8&domain=pdf
https://haveibeenpwned.com/
https://doi.org/10.1007/978-3-030-52683-2_8

Short Paper - Taming the Shape Shifter 161

the stolen information at scale requires specific tools. Automation is also a vital
part of these malicious operations as the size of the data that needs to be verified
and then abused becomes increasingly larger. As a result, malicious actors have
built automation tools to speed up this process. The existing anti-bot and fraud
detection tools and services heavily rely on browser fingerprinting [13]. In order to
bypass these mechanisms, malicious actors use specialized browsers that enable
them to easily switch fingerprints or simulate a target browsing environment
and evade detection. We assembled our list of anti-fingerprinting browsers by
searching the underground markets for the tools that malicious actors use, as
well as commercial and research projects that promise to defend against tracking.
Success stories (e.g., reaching over 90% success rate in carding attempts) and
tutorials on configuring and efficiently using these browsers are widely available
on different carding forums [1,2,9,10]. Malicious actors use these forums to trade
the stolen credit card information and share their latest tips on successful cashout
strategies.

Tools such as AntiDetect [22] and Fraudfox [21] are commonly incorporated
to mask the browser fingerprints of attackers and evade detection from tools
that look for known good (i.e. belonging to a specific benign user) or known
bad (i.e. belonging to a previously seen attacker) fingerprints. These browsers
not only enable attackers to switch browser fingerprints, they also give them
the ability to mimic a victim’s environment, such as, setting their timezone and
screen resolution to match the victim when visiting websites to make fraudulent
purchases or access the hacked accounts.

Even though these tools are popular among attackers, they have not received
the attention they deserve from the research community. In this paper, we study
the techniques that these tools incorporate to remain undetected and quan-
tify their effectiveness against state-of-the-art, in browser fingerprinting. After
analyzing the fingerprintable surface of these tools, we show that we were able
to devise fingerprinting-based signatures for all of them which can be used to
uniquely identify them. Our findings can be used by the existing anti-fraud sys-
tems to precisely identify the usage of anti-fingerprinting browsers.

2 Background

In a typical case of online fraud, multiple entities are involved. Usually, one party
is responsible for stealing credentials, which are then sold in bulk to another
party to be monetized [28]. The timeliness of these events is crucial. As the
stolen information gets stale, it is more likely for the compromised websites or
individual victims to have been informed about their information being stolen
and invalidate their credentials. In the mean time, to prevent issues with stolen
credentials, merchants who process payment information started to incorporate
browser fingerprinting to detect fraudulent and automated browsing activities.

Companies providing fraud detection services commonly use browser-
fingerprinting to track users [4,5,7,27]. By collecting information from users’
web browsers, these services build browsing profiles of normal users. This infor-
mation is then used to filter out fraudulent requests.



162 B. Amin Azad et al.

State-of-the-art browser fingerprinting identifies users by leveraging features
such as HTTP headers and available JavaScript APIs [16,24]. The act of fin-
gerprinting transcends the actual browser, enabling the identification of the
operating system and the underlying hardware [15]. This is typically achieved
based on the characteristics of rendered images within an HTML canvas ele-
ment [14,25]. Other researchers have focused on other parts of the browsing
environment to build more robust fingerprints by extracting the list of available
fonts and browser extensions [18,29]. Fingerprintjs2 [32], a well-known browser
fingerprinting library, compiles the previously mentioned fingerprinting meth-
ods in a JavaScript module that can be integrated with any website to collect
browser fingerprints of its visitors. Lastly, behavioral features of the user like the
use of clicks or touch can be collected to separate interactive user activity from
that of an automated client.

3 Anti-fingerprinting Browsers

To battle fingerprinting, anti-fingerprinting browsers capable of modifying the
content of their fingerprint were created. We categorize the browser fingerprint
modification schemes into three groups. Each group has its own benefits and
drawbacks as we discuss below:

— JavaScript Injection: In this method, JavaScript is injected into all web-
pages loaded by the browser. This way, JavaScript properties and methods
are overwritten to send different information to servers. For example, when a
script wants to access navigator.userAgent or render a canvas image, it will
find the newly injected version instead of the default one. The strength of this
approach is the ease of deployment and maintainability. However, prior work
has shown that these spoofing extensions may not offer the best protection
against fingerprinting as they often present incomplete coverage of JavaScript
objects and can create impossible configurations [26].

— Native Spoofing: Native spoofing modifies the source code of the browser
to return modified values. For some attributes, changing the sent value is as
simple as rewriting a string but for other methods like canvas fingerprinting,
successful modifications require a deeper understanding of a browser’s code-
base to find the right methods and modify them appropriately. The strength
of this solution is that it can be hard to detect as an inspection of the Doc-
ument Object Model (DOM) is not sufficient to detect traces of spoofing.
However, the downside is that the cost of maintenance can be high, requiring
a complete rebuild of the browser after each update.

— Recreating Complete Environments: This method consists of utilizing a
virtualized browsing environment with a desired configuration on top of the
host system. The advantage of this method is that the fingerprint presented
to servers is genuine as the components truly run on the system. For the same
reason, no impossible configurations can result from such an approach. On
the downside, this approach requires more system resources compared to a
simple browser extension or a modified browser.



Short Paper - Taming the Shape Shifter 163

In this section, we analyze research, commercial, and underground tools
against fingerprinting, in order to understand whether masking the true fin-
gerprint of a device can help bypass current fingerprinting techniques. Next, we
list the tools that are included in this study along with the anti-fingerprinting
mechanism they use.

AntiDetect and Fraudfox [JavaScript Injection]. AntiDetect is one of the
first tools that surfaced online against browser fingerprinting, gaining visibil-
ity from a 2015 article [3]. AntiDetect uses JavaScript injection and relies on
a browser extension to change the exhibited browser fingerprint. To improve
usability, users are presented with an interface where they can choose a profile
from a pool of existing browser fingerprint profiles. Fraudfox appeared at approx-
imately the same time as AntiDetect and works in a similar fashion by providing
an interface to users for selecting the fingerprint they want to expose [21]. Fraud-
fox offers the option to modify several attributes separately and also targets
advanced techniques, such as, font fingerprinting. It uses a custom Windows XP
virtual machine and a tool named OSfuscate to change the TCP/IP fingerprint
of the system in order to confuse nmap-like tools that can identify OSes based
on the structure of network packets.

Mimic [Native Spoofing]. Mimic is a modified Chrome browser that uses
native spoofing to modify its fingerprint [8]. Users can generate various profiles
and activate the desired fingerprinting protection. One particularly interesting
feature of Mimic is that it gives users the option to either block, or introduce noise
into some fingerprinting-related APIs. In contrast to the previously mentioned
underground tools, Mimic takes a different approach and advertises itself as a
generic solution against browser fingerprinting that can be used for marketing,
journalism, cyber investigation, and even web scraping activities.

Blink [Recreating Complete Environments]. Blink is a moving-target-style
defense against browser fingerprinting. Proposed by Laperdrix et al. [23], this
tool assembles a set of components at runtime into a virtual machine. Upon each
execution, the virtual machine’s environment is modified with new configurations
(e.g., timezone, available fonts, etc.) in order to generate an organic browser
fingerprint. This guarantees that the exhibited fingerprint is coherent compared
to the other tools where the artificial combination of browser properties can
easily result in impossible configurations.

A full comparison of the tools along with the exact fingerprinting techniques
that each of them counters, can be found in Table 1. The main tactic that these
tools incorporate against detection is frequent rotation of valid fingerprints. That
is, the common elements in browser fingerprints as mentioned both in the litera-
ture and popular opensource fingerprinting libraries such as Fingerprintjs2, are
configurable.

These values are faked through a large list of valid fingerprints that is either
shipped with these browsers or can be easily generated through their interface.



164 B. Amin Azad et al.

For instance, AntiDetect comes with over 4,000 profiles and Fraudfox includes
profiles with 90 user-agents and 5 browsers and 6 operating systems. Moreover,
users can choose to add noise to certain APIs such as audio context and the
canvas API. This variety makes it hard to derive features from the common fin-
gerprinting libraries to uniquely identify these browsers. Interestingly, Fraudfox
has been tested against popular browser fingerprinting tools and the successful
rotation of fingerprints and removal of tracking information (e.g., Evercookies [6])
has been verified in the underground carding forums [10].

All of the studied anti-fingerprinting browsers, except Blink, which is dis-
cussed separately in Sect. 4, modify or add noise to the existing browser proper-
ties. We will discuss in more detail how this type of modification will inherently
introduce inconsistencies and demonstrate concrete examples of these inconsis-

tencies and use them to build signatures that uniquely identify these browsers
in Sect. 4.

Table 1. Overview of the studied tools with the fingerprinting techniques they counter

Tool AntiDetect Fraudfox Mimic Blink

Type Injection Injection Native Recreation

Tested version 7.1 1.5.1 1.4.8 1.0

Number of profiles | >4,000 600 fonts, 90 1,000 2,762 fonts, 39

or components user-agents, 85 plugins, 6
plugins, 5 browsers and 4 OS
browsers and 6 OS

Browser used Firefox 41-48 Firefox 41 Chrome 61 Latest versions of

Chrome and

Firefox
Network - Proxy through Built-in proxy Built-in support
SocksCap64 + management for Tor
Obfuscation of OS | (HTTP, Socks5)
Network packet
through OSfuscate
User Agent v v v v
Language v v v
Screen v v v
Navigator v v v v
Timezone v v v v
Date v
Fonts v v v
Plugins v v v v
v

Media devices

Canvas Noise (letters in Noise (fonts and Noise (fonts and Noise (change of
strings) colors) colors) 08)

WebGL Blocked Blocked Only vendor and Noise (change of
renderer 0S)

WebRTC v Block or fake IP
address

Geolocation v v

Hardware v

Concurrency




Short Paper - Taming the Shape Shifter 165

4 Detecting the Anti-fingerprinting Tools

To extract unique characteristics that can be used to uniquely identify each
browser, we analyzed each tool using the techniques described by Nikiforakis
et al. [26] and Acar et al. [12]. We investigate built-in JavaScript objects, such
as, navigator and screen with and without anti-fingerprinting mechanisms,
looking for inconsistencies. According to Vastel et al., existing bot detection
schemes already use similar techniques to detect the presence of impossible fin-
gerprints [34]. To the best of our knowledge, we are the first to report on the
fingerprintability of dedicated anti-fingerprinting tools.

navigator.getGamepads.toString.toString ()

//Returns "function () { return "function getGamepads () {
[native code] }";}"

!/

//Standard Firefox returns

//"function toString() {

!/ [native codel

/73"

CanvasRenderingContext2D.prototype.__lookupSetter__ ("
strokeStyle").toString ()

//Returns

//"function (){

//"use strict";

//this.strokeStyle=settings.strokeStylel}"

!/

//Standard Firefox returns

//"function set strokeStyle() {

// [native codel

/73"

canvas = document.createElement ("canvas");

canvasContext = canvas.getContext("2d");

canvasContext.fillStyle = "#£f£f6600";

canvasContext.fillStyle.toString();

//Returns the color set by the user: "#71cda0l"

//Standard Firefox returns the color from the script: "#
£f£6600"

Listing 1. Detecting JavaScript injection performed by AntiDetect (top)
and Fraudfox (bottom)

e AntiDetect Since AntiDetect relies on a browser extension, a single line of
JavaScript is sufficient to detect injected values. Notably, objects created through
JavaScript are easily identifiable as they only contain a toString function. In
Listing 1 (top), we can clearly see the getGamepads function written by the
developers to modify the returned value as if it was a native one.



166 B. Amin Azad et al.

Like other tools relying on JavaScript injection, inconsistencies in fingerprints
are possible and frequent. One example is when AntiDetect launches a Chrome
profile where one can observe the presence of both webkit and moz prefixed
properties which is impossible as these belong to two different rendering engines.
Another example is a mismatch between two attributes where the user-agent
reports a 64-bit OS and the navigator.platform indicates a 32-bit one.

e Fraudfox presents the same shortcomings as AntiDetect as it also relies on
the same spoofing method. However, one needs to look elsewhere to find traces
of JavaScript injection. As shown in Listing 1 (bottom), the developers directly
poison the prototype of specific objects. One can also easily find the parameters
that are set in the tool’s interface like the exact filling color of the canvas API.
This could, in fact, act as a long-time identifier if the user always reuses the same
profile without regularly updating the canvas color. Finally, Fraudfox has its own
set of inconsistencies. For example, Chrome profiles present moz-prefixed prop-
erties but no webkit ones. Mac profiles show .dll extension for plugins instead of
.plugin.

e Mimic is harder to detect compared to the two previous solutions because
it does not rely on JavaScript injection. However, the browser is still identifi-
able through some unique inconsistencies that come from its database of fin-
gerprints. When spoofing the WebGL Renderer, Mimic always add the ANGLE
string in front of every value. However, this string can only be found on Win-
dows as Chrome uses the ANGLE backend on this operating system to translate
OpenGL API calls to DirectX. On Linux, plugins with the .so extension are vis-
ible creating an inconsistency if a Windows or a Mac profile is selected. Finally,
Mimic presents an incorrect priority in the HTTP language header. The sec-
ond language should present a priority of 0.9 (“en-US,en;en;q=0.9”") but Mimic
returns one of 0.8 (“en-US,en;en;q=0.8"). Changing the priority is easily fixable
in the profile database but it shows that the smallest detail can render a tool
identifiable.

Focus on Canvas Poisoning. Each tool also has its own canvas poisoning
technique, which as we demonstrate is identifiable. Figure 1 illustrates them.

Cwm fjordbank glyp-z. a 1fbanafid -
(a) Standard Chrome (b) AntiDetect
(c) Fraudfox (d) Zoom on the top left part of the ‘q’ of the

Mimic’s rendering

Fig. 1. Renderings of the same canvas test



Short Paper - Taming the Shape Shifter 167

AntiDetect changes the letters of a given string and their position. Fraudfox
modifies the colors set by a script. This is directly configurable in the interface of
the tool. Moreover, since the tool runs on Windows XP, the OS does not have any
fonts that support emojis (presence of a green square at the end of the strings).
Mimic is different from the other two as the modification is almost invisible for
the user. Mimic introduces a small amount of noise but an in-depth analysis
reveals that the transparency of some pixels were changed (on the zoomed-in
image, the top half of the orange rectangle is more transparent than the bottom
half).

Overall, our findings demonstrate that a combination of several tests is suf-
ficient to precisely identify all evaluated anti-fingerprinting tools. The quirks
discovered can be corrected but our results confirm that it is difficult to design
an anti-fingerprinting tool that is not detectable. For both JavaScript injection
and native spoofing, the smallest oversight can make the user stand out, be
marked as malicious and invalidate the offered protection.

Blink and the Recreation of Complete Environments

In this section, we showed how the operators of anti-fraud systems can fingerprint
anti-fingerprinting tools, based on the latter’s inability of perfectly mimicking
a non-native browsing environment. Blink, the research prototype by Laperdrix
et al. [23] that we introduced in Sect. 3, sets itself apart from the rest by the
fact that it does not attempt to mimick a foreign environment. Instead, Blink
assembles a real environment with different components and launches that envi-
ronment in a virtual machine. As such, none of the techniques presented in this
section can be used to detect Blink since there is no mimicking involved and
therefore no inconsistencies to be discovered.

Despite Blink’s attractiveness for defeating fingerprinting-based, unwanted
online tracking (since users can keep changing their fingerprints and therefore
break the linking of browser sessions), we argue that Blink’s utility is limited for
attackers. This is because, an attacker who tries to match the fingerprinting of
a victim user, must utilize Blink to recreate the entire browsing environment of
their victim. This requires not just the installation of the appropriate software,
but even the purchase of the appropriate hardware (e.g. to match the num-
ber of threads in the victim’s CPU and how the victim’s graphics card renders
complex 3D scenes). All of this is clearly possible for highly targeted attacks
but also highly unlikely for the monetization of credentials, since the invest-
ment in assembling the right environment can exceed the profit from the stolen
credentials.

5 Related Work

Prior work can be split into the study of underground markets, browser finger-
printing, and bot-based fraud detection.



168 B. Amin Azad et al.

Singh et al. studied the underground ecosystem of credit card fraud [28].
They describe the different methods that attackers use to steal credit card infor-
mation. These methods range from POS malware to exploitation of a vulnerabil-
ity. Given the difficulty and risk associated with monetizing stolen credentials,
attackers often resort to selling these illicitly obtained credentials to other attack-
ers specializing in monetization. The authors then go over the existing channels
to monetize the cards (e.g. by delivering high-end goods purchased with stolen
credentials to unsuspecting users who believe they are working for a shipping
company and will then re-ship the goods to another destination [19]). Other
works focused on trafficking of fraudulent twitter accounts in the underground
markets [31]. Fallmann et al. discussed their finding on probing these markets [17]
and Thomas et al. assessed the effect of data breaches on the activities of under-
ground markets [30].

In the realm of browser fingerprinting, researchers keep identifying fea-
tures that can be extracted from browsers and make browser fingerprints more
robust [14,15,18,25,29,33]. As fingerprinting-based fraud detection tools incor-
porate these features into their techniques, the tools used by attackers must
also account for them (such as accounting for canvas-based fingerprinting, as
described in Sect. 4).

One of the challenges in the study of JavaScript files and fingerprinting scripts
is instrumenting the various API calls and monitoring them. VisibleV8 is a
Chromium based browser that is easy to maintain over time and provides the
ability to monitor JavaScript API calls [20]. The authors used their customized
browser to analyze the prevalence of scripts that query for bot and browser
automation artifacts on popular Alexa websites.

6 Conclusion

In this paper, we showed that anti-fingerprinting tools are capable of bypass-
ing the protection of state-of-the-art fingerprinting techniques by masking the
components that are queried by fingerprinting libraries. We analyzed their mask-
ing techniques (i.e., JavaScript injection, native spoofing, and the recreation of
complete environments) and described the process of identifying fingerprinting-
based inconsistencies which can be used to identify them and block them. Our
analysis showed that all tools that attempt to mimick non-native environments
are unique fingerprintable and therefore can be identified by anti-fraud systems,
through the use of our proposed fingerprinting vectors. Finally, we discussed the
difficulty of fingerprinting tools that are based on the recreation of browsing
environments and the reasons why these tools are highly unlikely to be used in
generic, non-targeted attacks.

Acknowledgements. We thank the anonymous reviewers for their helpful feedback.
This work was partially supported by a gift from Amazon and the National Science
Foundation (NSF) under grants CNS-1813974, CNS-1617902, and CMMI-1842020.



Short Paper - Taming the Shape Shifter 169

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

AntiDetect tool, only way to cashout from stolen credit cards (2015). https://www.
ehacking.net/2015/03/antidetect-tool-only-way-to-cashout.html

Fraudfox makes it easier for thieves to empty bank accounts (2015). https://www.
pcworld.com/article /2872372 /this-tool-may-make-it-easier-for-thieves-to-empty-
bank-accounts.html

Post by Brian Krebs on AntiDetect (2015). https://krebsonsecurity.com/tag/
antidetect/

DataDome: Protect your website from bot traffic (2017). https://datadome.co/
Distil Networks: Bot Mitigation & API Security (2017). https://www.
distilnetworks.com/

Evercookie (2017). https://github.com/samyk/evercookie

ShieldSquare: Bot Mitigation & Protection (2017). https://www.shieldsquare.com/
Multilogin - The Most Advanced Browser Fingerprinting Protection Ever Created -
Enter Mimic (2018). https://multiloginapp.com/advanced-browser-fingerprinting-
protection-ever-created-enter-mimic/

AntiDetect 7 and FraudFox VM, best carder protection (2019). https://
imgur.com/a/ycxFTtz and. https://bazaar.blockstamp.market/listings/view/
QmX9IVGTz2HziSqL7kjNSGjPe8UHDrdyyxZwXyQbBgTbWcN-antidetect-7-
fraudfox-vm-full-version-of-both-applications-best

Fraudfox tool in and underground carding forum (2019). https://imgur.com/
a/6xmYPgN and. https://www.verifiedcarder.ws/threads/fraudfox-tool-cracked.
21485/

Magecart Skimmers Spotted on 2M Websites (2019). https://www.darkreading.
com/endpoint/magecart-skimmers-spotted-on-2m-websites/d /d-id /1336011
Acar, G., et al.: FPDetective: dusting the web for fingerprinters. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security
(2013)

AminAzad, B., Starov, O., Laperdrix, P., Nikiforakis, N.: Web runer 2049: evalu-
ating third-party anti-bot services. In: DIMVA (2020)

Bursztein, E., Malyshev, A., Pietraszek, T., Thomas, K.: Picasso: lightweight
device class fingerprinting for web clients. In: Proceedings of the 6th Workshop
on Security and Privacy in Smartphones and Mobile Devices (2016)

Cao, Y., Li, S., Wijmans, E.: (Cross-)browser fingerprinting via OS and hardware
level features. In: NDSS (2017)

Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1-18. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14527-8_1

Fallmann, H., Wondracek, G., Platzer, C.: Covertly probing underground economy
marketplaces. In: DIMVA (2010)

Fifield, D., Egelman, S.: Fingerprinting web users through font metrics. In: Pro-
ceedings of the 19th International Conference on Financial Cryptography and Data
Security (2015)

Hao, S., et al.: Drops for stuff: an analysis of reshipping mule scams. In: Proceedings
of the 22nd ACM Conference on Computer and Communications Security (2015)
Jueckstock, J., Kapravelos, A.: Visible V8: in-browser monitoring of JavaScript in
the wild. In: Proceedings of the ACM SIGCOMM Internet Measurement Confer-
ence, IMC (2019)


https://www.ehacking.net/2015/03/antidetect-tool-only-way-to-cashout.html
https://www.ehacking.net/2015/03/antidetect-tool-only-way-to-cashout.html
https://www.pcworld.com/article/2872372/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://www.pcworld.com/article/2872372/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://www.pcworld.com/article/2872372/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://krebsonsecurity.com/tag/antidetect/
https://krebsonsecurity.com/tag/antidetect/
https://datadome.co/
https://www.distilnetworks.com/
https://www.distilnetworks.com/
https://github.com/samyk/evercookie
https://www.shieldsquare.com/
https://multiloginapp.com/advanced-browser-fingerprinting-protection-ever-created-enter-mimic/
https://multiloginapp.com/advanced-browser-fingerprinting-protection-ever-created-enter-mimic/
https://imgur.com/a/ycxFTtz
https://imgur.com/a/ycxFTtz
https://bazaar.blockstamp.market/listings/view/QmX9VGTz2HziSqL7kjNSGjPe8UHDrdyyxZwXyQbBgTbWcN-antidetect-7-fraudfox-vm-full-version-of-both-applications-best
https://bazaar.blockstamp.market/listings/view/QmX9VGTz2HziSqL7kjNSGjPe8UHDrdyyxZwXyQbBgTbWcN-antidetect-7-fraudfox-vm-full-version-of-both-applications-best
https://bazaar.blockstamp.market/listings/view/QmX9VGTz2HziSqL7kjNSGjPe8UHDrdyyxZwXyQbBgTbWcN-antidetect-7-fraudfox-vm-full-version-of-both-applications-best
https://imgur.com/a/6xmYPgN
https://imgur.com/a/6xmYPgN
https://www.verifiedcarder.ws/threads/fraudfox-tool-cracked.21485/
https://www.verifiedcarder.ws/threads/fraudfox-tool-cracked.21485/
https://www.darkreading.com/endpoint/magecart-skimmers-spotted-on-2m-websites/d/d-id/1336011
https://www.darkreading.com/endpoint/magecart-skimmers-spotted-on-2m-websites/d/d-id/1336011
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1

170

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

B. Amin Azad et al.

Kirk, J.: This tool may make it easier for thieves to empty bank accounts. https://
www.csoonline.com/article/2871248 /fraud-prevention/this-tool-may-make-it-
easier-for-thieves-to-empty-bank-accounts.html

Krebs, B.: ‘AntiDetect’ Helps Thieves Hide Digital Fingerprints. https://
krebsonsecurity.com/2015/03/antidetect-helps-thieves-hide-digital-fingerprints/
Laperdrix, P., Rudametkin, W., Baudry, B.: Mitigating browser fingerprint track-
ing: multi-level reconfiguration and diversification. In: 10th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
2015) (2015)

Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: diverting mod-
ern web browsers to build unique browser fingerprints. In: 37th IEEE Symposium
on Security and Privacy (2016)

Mowery, K., Shacham, H.: Pixel perfect: fingerprinting canvas in HTML5. In: Pro-
ceedings of W2SP 2012 (2012)

Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting.
In: Proceedings of the 2013 IEEE Symposium on Security and Privacy (2013)
PerimeterX: Anti Bot Protection - Protect Against Bot Attacks. https://www.
perimeterx.com/

Singh, A.: The Underground Ecosystem Of Credit Card Fraud. Black Hat Asia
(2015)

Starov, O., Nikiforakis, N.: XHOUND: quantifying the fingerprintability of browser
extensions. In: 38th IEEE Symposium on Security and Privacy (2017)

Thomas, K., et al.: Data breaches, phishing, or malware? Understanding the risks
of stolen credentials. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (2017)

Thomas, K., McCoy, D., Grier, C., Kolcz, A., Paxson, V.: Trafficking fraudulent
accounts: the role of the underground market in Twitter spam and abuse. In:
USENIX Security (2013)

Vasilyev, V.: FingerprintJS2: Modern & flexible browser fingerprinting library.
https://github.com/Valve/fingerprintjs2

Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: FP-STALKER: tracking
browser fingerprint evolutions. In: 39th IEEE Symposium on Security and Privacy
(2018)

Vastel, A., Rudametkin, W., Rouvoy, R., Blanc, X.: FP-Crawlers: studying the
resilience of browser fingerprinting to block crawlers. In: Starov, O., Kapravelos,
A., Nikiforakis, N. (eds.) NDSS Workshop on Measurements, Attacks, and Defenses
for the Web (2020)


https://www.csoonline.com/article/2871248/fraud-prevention/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://www.csoonline.com/article/2871248/fraud-prevention/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://www.csoonline.com/article/2871248/fraud-prevention/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://krebsonsecurity.com/2015/03/antidetect-helps-thieves-hide-digital-fingerprints/
https://krebsonsecurity.com/2015/03/antidetect-helps-thieves-hide-digital-fingerprints/
https://www.perimeterx.com/
https://www.perimeterx.com/
https://github.com/Valve/fingerprintjs2

	Short Paper - Taming the Shape Shifter: Detecting Anti-fingerprinting Browsers
	1 Introduction
	2 Background
	3 Anti-fingerprinting Browsers
	4 Detecting the Anti-fingerprinting Tools
	5 Related Work
	6 Conclusion
	References




