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Abstract. Fake antivirus (AV) software is a serious threat on the Inter-
net to make users install malware and expose their personal information.
Fake removal information advertisement (FRAD) sites, which introduce
fake removal information for cyber threats, have emerged as platforms for
distributing fake AV software. Although FRAD sites seriously threaten
users who have been suffering from cyber threats and need information
for removing them, little attention has been given to revealing these
sites. In this paper, we propose a system to automatically crawl the web
and identify FRAD sites. To shed light on the pervasiveness of this type
of attack, we performed a comprehensive analysis of both passively and
actively collected data. Our system collected 2,913 FRAD sites in 31 lan-
guages, which have 73.5 million visits per month in total. We show that
FRAD sites occupy search results when users search for cyber threats,
thus preventing the users from obtaining the correct information.

Keywords: Fake AV software · Social engineering attacks

1 Introduction

Antivirus (AV) software is one of the basic defense strategies for protecting
users’ devices. The major AV software market was valued at 3,770 million USD in
2018 [12], and attackers focus on the needs of such pervasive AV software to gain
financial benefits. Specifically, fake AV software, which are rogue applications
disguised as legitimate AV software, is used to manipulate users’ devices and
steal money or sensitive information [2,18]. For example, once fake AV software
is installed, the software displays fake virus scan results to get users to purchase
additional licenses [4,23].

Fake AV software is a traditional cyber threat that can effectively spread
malware and unwanted software on the web [11,22]. To infect users and gain more
profit, attackers take advantage of online advertisements that target many people
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to distribute fake AV software [26]. The web pages served by these advertisements
typically show fake virus infection alerts or messages claiming the necessity of
installing their software. These web pages also attract users with promises of
speeding up their machines [24]. Attackers use such social engineering techniques
that exploit users’ psychological vulnerabilities to lure users to download fake
AV software. These web pages are known to be major distribution paths for fake
AV software [7,15,27].

In this paper, we focus on new techniques that psychologically encourage
users to install fake AV software from the web. Attackers create web pages that
introduce fake information for handling specific cyber threats, such as malware
infection or visits to malicious web pages, and suggest fake AV software. We call
these web pages fake removal information advertisement (FRAD) sites, which
target users who have already suffered from security problems and which make
them victims of another one. For example, users who notice their malware infec-
tion try to search for removal information using the malware detection names
given by virus scanners, and they reach the FRAD sites from search results.
Believing the FRAD information, the users follow the instructions and inadver-
tently install the suggested fake AV software. Although it is well known that
attackers induce users to install fake AV software using scaring or attracting
messages–such as fake infection alerts or promises to speed up their machines–
little attention has been given to analyzing the FRAD sites.

Here, we propose a system that automatically crawls the web pages and
detects FRAD sites. Using the linguistic and visual features of the web pages,
we accurately identify FRAD sites with 98.8% true positives and only 3.3%
false positives. We used our system for a large-scale collection of FRAD sites
and found 2,913 distinct domain names of FRAD sites written in 31 languages.
The total user accesses to these FRAD sites was 73.5 million visits per month.
We observed that these FRAD sites are not adequately reported by existing
blacklists.

To reveal the ecosystem of FRAD sites, we performed a measurement study
using both passively collected statistical data on user accesses and actively
crawled data. We first investigated the incoming traffic to FRAD sites to deter-
mine what types of user behaviors are at risk of reaching FRAD sites. We found
that many users not only accessed these sites from search engines directly but
also reached FRAD sites from videos or messages posted on social media by
attackers’ accounts. To determine what kinds of attacks users encounter from
FRAD sites, we then analyzed the transferred web pages and downloaded files
from the FRAD sites. We confirmed that the FRAD sites led to 76 fake AV soft-
ware families by directly distributing installers and luring users to payment and
distribution sites. Also, we investigated search results for the names of specific
cyber threats, and we found that 82.6% of the top 10 search results were occu-
pied by FRAD sites. In other words, search results for information concerning
cyber threats are poisoned by FRAD sites, making it difficult for users to obtain
correct removal information. To the best of our knowledge, this is the first study
that has revealed the prevalence and ecosystem of FRAD sites.
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Fig. 1. Overview of fake AV software distribution via FRAD sites. Users that require
removal information for cyber threats access FRAD sites via a web search (e.g., search
engines or social media) ( 1 ). They click on download buttons on the FRAD sites and
are navigated to software distribution sites ( 2 ). They download fake AV software from
these sites ( 2 ’) or from the FRAD sites ( 3 ) directly. Then, they make the damage
even worse by installing the fake AV software ( 4 ).

In summary, our contributions are as follows:

– We propose a system to crawl the web and detect FRAD sites automati-
cally. By extracting linguistic and visual features from crawled web pages,
our system detected FRAD sites with 98.8% true positives and 3.3% false
positives.

– We performed a large-scale collection of FRAD sites on the web by leveraging
a search engine, which is the most common channel used to reach FRAD sites.
Using our system, we discovered 2,913 domain names of FRAD sites written
in 31 languages. We found that attackers widely deploy FRAD sites targeting
users in various countries to increase the number of page views.

– We conducted a comprehensive measurement study using both passively col-
lected statistics data and actively crawled data to reveal the ecosystem of
FRAD sites. Our measurement study also clarified the typical incoming chan-
nels employed by users to reach FRAD sites and the types of potential threats
directed from the FRAD sites. We also found that it is difficult for users who
need removal information for specific cyber threats to reach correct informa-
tion, because most of the search results concerning cyber threats are poisoned
by the FRAD sites.

2 Background

We first consider an attack technique for distributing fake AV software via FRAD
sites. The purpose of the FRAD sites is to deceive users who need ways to deal
with cyber threats, i.e., malicious acts that damage the users’ devices and steal
their sensitive information. Examples of cyber threats include malware infection,
fraudulent popup messages, and malicious browser extensions. Attackers post
multiple entries on FRAD sites that introduce fake threat removal guides, using
the names of specific cyber threats, such as malware detection names or the
domain names of malicious sites. For instance, there can be more than 15k
entries in a single FRAD site, and dozens of new entries are added to the FRAD
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site every day. When users notice that they have security issues by looking at
the results from legitimate virus scanners or from suspicious alert messages on
web pages, they search for information to remove them. Users who reach FRAD
sites and are deceived by false information install fake AV software, which makes
matters worse. We focus on such scams on the web in this paper.

Figure 1 shows an overview of the distribution of fake AV software via FRAD
sites. First, users who have security problems reach FRAD sites by searching for
the specific names of cyber threats they want to remove ( 1 ). Attackers leverage
search engine optimization (SEO) techniques that target specific names of cyber
threats to increase the web traffic to FRAD sites. Attackers also post fake videos
on YouTube that introduce ways to remove the threats, and they post similar
articles on Facebook and other social media to lure users to click on links to
FRAD sites. Forum and community sites where anyone can post messages are
also used by the attackers in the same manner. Thus, users not only visit FRAD
sites from results provided by search engines but also reach FRAD sites through
social-media postings and other web pages hit by the search results. The FRAD
sites contain detailed fake removal guides for individual threats as well as large
buttons or banners to direct users to fake AV software. The FRAD sites usually
display the logos of famous security vendors or third-party organizations (e.g.,
software certification companies) to make them look as if they are legitimate
web pages. Users who click on the buttons or banners are navigated to software
distribution sites ( 2 ). Most of the software distribution sites use domain names
containing the names of the fake AV software and disguise themselves as official
sites for legitimate AV software by displaying product information and purchase
menus. These sites are also reachable through search engines and even provide
customer support such as web chats or toll-free calls. On these web pages, users
follow the payment and download instructions and then obtain fake AV software
installers ( 2 ’). These installers can also be downloaded from the FRAD sites
directly ( 3 ). Users install the fake AV software and thus become victims of
other cyber threats ( 4 ).

Some social engineering techniques are already known, such as threatening
users using fake infection alerts or attracting them by the prospect of improving
computer performance. However, it has not been clarified whether attackers use
techniques for distributing fake AV software that exploit the weaknesses of users
who have already suffered from cyber threats.

3 Method

In this section, we introduce our system for collecting and detecting FRAD sites
on the Internet automatically. The system consists of two steps: web crawling
and classification.

3.1 Web Crawling

The implementation of a web crawler that collects and stores browser-level infor-
mation from web pages is the first step in our system. The requirement of the
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Table 1. List of terms for each category; used to check the term’s frequency in the
title, URL paths, domain names, and text content of a web page.

Category Example terms

way “how to”, “guide”, “solution”, “tips”, “report”, “instruction”

removal “remove”, “get rid of”, “uninstall”, “delete”, “fix”, “clean”, “kill”,
“block”, “repair”, “anti”, “entfernen”, “eliminar”, “verwijderen”,
“deinstallieren”, “desinstalar”, “supprimer”, “remuovere”, “usunac”

problem “virus”, “malware”, “spyware”, “trojan”, “backdoor”, “adware”,
“threat”, “infection”, “ransom”, “error”, “pop up”, “redirect”

device “computer”, “pc”, “windows”, “mac”, “browser”

crawler is to extract linguistic and image features from a web page rendered by a
web browser and to compose a feature vector for the result. To analyze the FRAD
sites in detail, we also need to capture the network traffic to and perform browser
interactions on the web page. To achieve this, we designed and implemented the
crawler using Scrapy1, which is a web crawling framework for Python, in order to
develop functions for monitoring and managing logged data. We used Selenium2

as the middleware for Scrapy to automate a real web browser. We used Google
Chrome as the default web browser for the crawler. To monitor network traffic
in detail, we used Chrome DevTools API3. This is necessary, because we collect
network-level information such as HTTP requests and responses that Selenium
API does not handle directly. The collected information–such as screenshots,
HTML source codes, and network traffic–are stored to MongoDB. We use those
kinds of information for the next step, classification.

3.2 Classification

In the second step, our system extracts features from the information collected
from the web pages and identifies FRAD sites using a supervised machine learn-
ing approach. In particular, the system analyzes term frequencies in web pages
and URLs, the presence of logo images on screenshots, and HTML structures,
such as the number of tags, and combines them into a feature vector. We explain
the detail of each feature below.

Term Frequencies. To capture the linguistic characteristics of FRAD sites,
frequencies of terms are used as a feature. To improve the SEO rank-
ing and ensure an easy web page topic for users to understand, FRAD
sites use terms meaning for the removal of cyber threats in the titles,
URL paths, domain names, and text content of their web pages. Examples

1 https://scrapy.org/.
2 https://selenium.dev/.
3 https://developer.chrome.com/extensions/devtools.

https://scrapy.org/
https://selenium.dev/
https://developer.chrome.com/extensions/devtools
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of such titles are “Remove Trojan.Zerocleare (Virus Removal Guide)” and
“Remove Magiballs.com (Free Guide).” The URL paths include forms such as
“/2019/12/27/how-to-remove-my-login-hub-virus-removal-guide/” and
“/uninstall-nvux-xyz-from-windows-7-8-8-1-10.” Examples of domain
names are uninstallmalwarefrompc[.]example and virusremovalguide[.
]example. The text content of the web page is written with a summary of the
cyber threat and specific removal information for it.

Our key insight is that the FRAD sites must include a phrase composed
of the following four categories of terms: way, removal, problem, and device.
Table 1 shows a list of example terms. As the feature vector, we use the number of
occurrences of each term category in the following four fields: the title, URL path,
domain name, and text content. The terms in the four categories are intended to
capture phrases such as “how to remove Trojan.Zerocleare virus from my PC.”
Because the FRAD sites are created in many languages, we leverage machine
translation services such as Cloud Translation API4 and Amazon Translate5. We
translate the title and text content of the crawled web pages into English and
then calculate the frequencies of the terms.

To create the list of terms, we extracted all terms that match each category
from the title, URL paths, domain names, and text content of 300 FRAD sites
that were randomly selected from our created dataset, as discussed below in
Sect. 4. Some domain names include non-English terms in the removal category,
such as “entfernen” in German and “eliminar” in Spanish. Because these domain
names are difficult to translate, we manually obtained such terms as much as
possible. To this end, we separated the domain names by “.” or “-” and used
word segmentation6 and then searched for the meaning of each extracted word.

Logo Images. We next consider features that specify logo images on the FRAD
sites. The FRAD sites include download buttons and software packages that may
be shared among multiple FRAD sites. The FRAD sites also display logos of
security vendors, operating system (OS) vendors or software certification com-
panies in order to pretend to be legitimate sites. These logos are copied from
vendors’ sites or used as image files modified from the original images. To find
such visual characteristics, our system uses an image matching approach on the
basis of our logo image database. Specifically, the system extracts images from
img tags and crops images for which the area matches a or button tag elements
from screenshots. It calculates the perceptual hash7 of these images and com-
pares them to the image database. If the target image is more than 85% similar
to the image in the database, the system determines it to be a logo image. Three
types of images are stored in the database: logos of security vendors or soft-
ware certification company (19 images), package images of fake AV software (33
images), and images of the download buttons (56 images). We extracted images

4 https://cloud.google.com/translate/.
5 https://aws.amazon.com/translate/.
6 http://www.grantjenks.com/docs/wordsegment/.
7 https://github.com/JohannesBuchner/imagehash.

/2019/12/27/how-to-remove-my-login-hub-virus-removal-guide/
/uninstall-nvux-xyz-from-windows-7-8-8-1-10
uninstallmalwarefrompc[.]example
virusremovalguide[.]example
virusremovalguide[.]example
https://cloud.google.com/translate/
https://aws.amazon.com/translate/
http://www.grantjenks.com/docs/wordsegment/
https://github.com/JohannesBuchner/imagehash
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belonging to the three types from the 300 FRAD sites used in the above. Our
system counts the number of images that match each type to create feature
vectors.

HTML Structure. Here, we explain the features extracted from the HTML
structure that we use for identifying FRAD sites. As with previous works that
identify specific types of malicious web pages [7,17], the numbers of a and iframe
tags are important indicators of FRAD sites. Also, FRAD sites often re-use web
page templates so that they have similar structures of HTML source codes. In
other words, the frequency of HTML tags and combinations of those numbers
characterize FRAD sites. To find such features, the system counts the number
of appearances of HTML tags. The HTML tags to be counted are the top 30
tags frequently used in the 300 FRAD sites mentioned above.

4 Data Collection

We explain the method used to collect FRAD sites in the wild in order to make
the dataset employed to evaluate our classification model. We first collected
the names of cyber threats. Then, we searched for and gathered candidates of
FRAD sites using the names of those cyber threats. Finally, we manually created
a labeled dataset for our evaluation experiment.

4.1 Collecting Cyber Threats

We collected the names of cyber threats to make search queries to find candidate
FRAD sites. As described in Sect. 2, FRAD sites prepare many entries that
introduce ways of removing specific cyber threats such as malware detection
names and malicious domain names. To collect such names efficiently, we crawled
the database pages of security vendors (e.g., Symantec Security Center8) and a
security community site (e.g., malwaretips[.]com) in October 2019. We collected
806 names of threats, including 500 malware detection names, 200 malicious
domain names, and 106 popup messages.

4.2 Web Search

We created search queries using the collected names of cyber threats and gath-
ered the URLs of web pages using a search engine. To collect FRAD sites effi-
ciently, we added “how to remove” to the name of the cyber threat to create
the search query, instead of searching only for the name of the threat. We found
that we can collect more FRAD sites by searching with “how to remove” in our
experiment described in Sect. 6.3. To collect search results systematically, we
used Microsoft Bing Web Search API9 and gathered 34k URLs. We chose one
URL for each domain name from among the gathered URLs. As a result, we
extracted 4,188 URLs with 4,188 unique domain names to crawl.
8 https://www.symantec.com/security-center/a-z.
9 https://azure.microsoft.com/en-us/services/cognitive-services/.

https://www.symantec.com/security-center/a-z
https://azure.microsoft.com/en-us/services/cognitive-services/
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4.3 Creating the Dataset

We crawled 4,188 web pages using our system and created a labeled dataset.
Since there is no existing URL blacklist that accurately identifies FRAD sites,
we manually labeled them by analyzing the crawled web pages and actually
accessed them as necessary. To efficiently conduct this process, we created a web
application that displays screenshots and buttons to choose labels (FRAD and
non-FRAD sites). This application extracts information about the crawled web
pages from our MongoDB database and generates the web pages for labeling.
We implemented it using Node.js and the Express10 framework. We labeled web
pages as FRAD sites if they satisfied following heuristic rules. If not, we labeled
the web pages as non-FRAD sites.

i. We check whether a web page introduces a removal guide for a specific cyber
threat. If so, we check rule ii.

ii. We check whether the web page has visual characteristics specific to FRAD
sites, as described in Sect. 3.2. Specifically, we check whether the web page
has an image of a fake AV software package or a logo of a security ven-
dor or a software certification company. We also check screenshots of the
removal instructions or download buttons, which are often shared with mul-
tiple FRAD sites. If the web page has these characteristics, we identify it as
an FRAD site. If not, we further check rule iii.

iii. We confirm that clicking a download button on the web page triggers a
download of a fake AV software installer or initiates a web transition to a
distribution or payment site for fake AV software. We performed this process
by manually accessing the web page and clicking the download button.

From the 15-h labeling process, we obtained 804 web pages of FRAD sites
with 804 unique domain names. To create a dataset, we randomly selected 800
web pages from these FRAD sites. We also randomly selected 800 web pages
from non-FRAD sites, which are the web pages remaining after excluding the
804 web pages of FRAD sites. Since we collected the non-FRAD sites using
the same search queries as for the FRAD sites, they often introduce removal
information for cyber threats, details of malware, or introductions to legitimate
AV software, just as FRAD sites do. Thus, it is a challenging task to identify
FRAD sites accurately from these similar web pages.

5 Evaluation

We next evaluated the detection capability of our system in terms of its capability
to classify web pages accurately as FRAD sites or non-FRAD sites. We also
conducted an experiment to discover unknown FRAD sites in the wild using the
trained classification model.

10 https://expressjs.com/.

https://expressjs.com/
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5.1 Detection Accuracy

We first evaluated the detection accuracy of our system using the balanced
dataset including 800 FRAD sites and 800 non-FRAD sites. We used a random
forest classifier as the machine learning algorithm for two-class classification,
because we can easily tune it due to the small number of hyper parameters
to be considered. We conducted a 10-fold cross validation to determine how
accurately our system performed classifications. We found that our system clas-
sified web pages with a 98.8% true positive (TP) rate (= TP

TP+FN ), where FN
= false negative, a 3.3% false positive (FP) rate (= FP

FP+TN ), and with 96.8%
precision (= TP

TP+FP ). The system identified 26 non-FRAD sites as FRAD sites
(FPs). Examples include articles from security vendors that introduce malware
information, ranking web pages for legitimate AV software, and blog entries that
describe correct removal instructions. Five FPs were security vendors’ web pages
that often appear in search results when searching for removal information for
cyber threats. We can therefore reduce FPs by placing the domain names of
major security vendors on a whitelist. Examples of false negatives include web
pages with domain names that do not include words such as “remove” or “mal-
ware.” Other false negatives do not contain visual features such as images of
fake AV software packages or logos of security vendors.

5.2 Detecting Unknown FRAD Sites

To collect unknown FRAD sites that have not been found in Sect. 5.1, we con-
ducted additional data collection and detection using our classification model,
which has high detection accuracy.

Additional Data Collection. We first describe additional data collection to
find more FRAD sites in the wild, such as non-English FRAD sites and FRAD
sites with content copied from other sites. In the process of creating the dataset
described in Sect. 4, we found many FRAD sites written in various languages.
Some of them were translated automatically according to the browser’s language
setting when the web pages were loaded. Some web pages were also written in
multiple languages to enable users to switch languages. In addition, we found
FRAD sites dedicated to certain languages. In such cases, the domain names con-
tain words in those languages (e.g., “entfernen” in entfernen-spyware[.]example
and “eliminar” in eliminarvirus[.]example), as described in Sect. 3.2. We also
found that FRAD sites are often copied from other FRAD sites and from legit-
imate sites that introduce specific malware removal information. These FRAD
sites not only use the names of cyber threats extracted from legitimate sites
but also copy page titles or entire articles from them. To find such FRAD sites,
we collected page titles from legitimate sites (malwaretips[.]com and malware-
fixes[.]com) and from the 804 FRAD sites we labeled, which include non-English
sites, and we searched for the titles using Bing API. Although it is difficult to
create search queries in multiple languages to collect non-English FRAD sites,
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we can gather them efficiently in this way. We gathered 16k page titles from
these web pages and collected 836,731 URLs (111,161 domain names) from these
search. We extracted up to three URLs from each domain name and crawled
them (120,577 URLs) using our system.

Detection Result. As a result of the classification of additionally crawled
web pages, we identified 6,130 URLs as FRAD sites. To find FPs, we manually
checked web pages classified as positive in the same way as described in Sect. 4.3.
Examples of FPs include the following. Some technical-support scam [14,21]
sites were falsely identified as FRAD sites, because they offered support for
malware removal and displayed noticeable phone numbers and web-chat support.
These FPs are not FRAD sites, however, because they did not lead users to fake
AV software but instead are actually malicious web pages themselves, which
are listed in VirusTotal11. Moreover, our system falsely detected pirate web
pages that introduce free downloads of fake AV software. Although such fake AV
software is useless and not very well-known, some web pages illegally offered such
software. Other FPs include software review and download sites, which distribute
fake AV software as well as legitimate software. We also found FPs similar to
those described in Sect. 5.1. By excluding these FPs, we finally determined 5,780
URLs (2,109 domain names) as FRAD sites. The precision of this classification
result was 94.3%. Although this precision is somewhat less than the results
obtained in Sect. 5.1, we accurately identified FRAD sites. The reason for this
decrease in detection capability is that we changed the search queries from “how
to remove” and the name of threats (used in Sect. 4.2) to page titles of known
FRAD sites, so that the types of web pages in the search results were somewhat
changed.

Summary of Collected FRAD Sites. Overall, in this paper we have identi-
fied 2,913 domain names, including the newly discovered 2,109 domain names, to
be FRAD sites. To confirm the FRAD sites already reported by security vendors,
we searched for all 2,913 domain names in VirusTotal. Of the total, 32.7% (952
domain names) of the domain names had URLs that had already been detected
by one or more vendors. We also found 21.5% (626/2,913) of the domain names
had URLs that are sources of detected files. Although some FRAD sites have
been detected by a small number of security vendors, most of the FRAD sites
we found in this paper have been unreported to date. These FRAD sites are
less likely to be filtered out from search results, even if they were reported as
malicious. Thus, most of these FRAD sites remain easily accessible to users and
remain threatening to them.

11 https://www.virustotal.com.

https://www.virustotal.com
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Fig. 2. Percentage of incoming traffic to FRAD sites from each channel.

6 Measurement Study

We measured the ecosystem and risk of FRAD sites using both passively collected
statistical data of user accesses and actively crawled data. In the experiment
described above, we found FRAD sites using our system and simply checked
the detection status for each of them on VirusTotal. Here, we analyze deeply the
2,913 domain names of FRAD sites that we found in Sect. 5 in terms of incoming
traffic to those FRAD sites, the distribution of fake AV software from those sites,
and poisoned search results that are occupied by FRAD sites.

6.1 Incoming Traffic to FRAD Sites

To find out what browsing behaviors of users are at risk of reaching FRAD
sites, we analyzed the incoming channels (i.e., 1 in Fig. 1 in Sect. 2) of the
FRAD sites that we found in Sect. 5. To this end, we need data on the history of
user accesses to and traffic volumes of those web pages. Thus, we leveraged the
statistical data provided by SimilarWeb12, which passively observes hundreds of
millions of global devices and covers over 220 countries and territories. Using
this approach, we collected statistical data from October to December in 2019
that we used in the measurement studies described below.

Overview of Incoming Traffic. We first show an overview of seven types of
incoming traffic to FRAD sites. We investigated 1,451 domain names of FRAD
sites for which data are available in SimilarWeb (out of 2,913 domain names
of the FRAD sites we discovered in this paper). Note that statistical data of
web pages with few user accesses are not provided. These FRAD sites have
12 https://www.similarweb.com/.

https://www.similarweb.com/
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Table 2. Search queries used by the users to reach FRAD sites.

Category Search query #

Cyber threats how to <remove><threat> 576

<remove><threat> 438

<threat> 849

is <threat> safe ? 27

what is <threat> 113

<error> 140

Download download <software> 421

crack <software> 101

Fake AV software <fake AV software> 66

Other <other> 1, 802

Total 4, 510

73.5 million visits per month in total. Figure 2 shows the percentage of traffic
to the FRAD sites from each incoming channel. The channels consist of seven
labels: Search (accessed from a search engine), Direct (directly accessed by enter-
ing URLs in a web browsers), Referral (accessed from other web pages), Social
media (accessed from Social Media), Paid search (accessed from keyword adver-
tisements on search engines), Display ad (accessed from advertisements on web
pages), and Mail (accessed from hyperlinks on email). Note that the incoming
traffic measured as Mail comes only from web mail. Incoming traffic from email
client software or other applications is measured as Direct. The mean values of
Search, Direct, Referral, and Social media were 76.7%, 16.5%, 1.7%, and 1.7%,
respectively. The value for each of the other three channels is less than 0.6%.
Paid search, Display ad, and Mail have few data for further investigation. Also,
we only know the amount of incoming traffic that we have shown here from
the data of Direct. Therefore, in the following, we analyzed the detail of three
channels: Search, Referral, and Social media.

Search. To find out how users reached FRAD sites via search engines, we
investigated the statistics of the search queries. We extracted the top 10 English
search queries (4,510 unique queries in total) for each FRAD site and cate-
gorized them. Table 2 shows the categories and the number of search queries.
We found that 47.5% (2,143/4,510) of the search queries were related to the
names of specific cyber threats. They included malware detection names (e.g.,
trojan:win32/bearfoos.a!ml), malicious domain names, and alert dialog messages
(e.g., “your computer is infected with dangerous viruses”). Among them, 12.8%
(576/4,510) are search queries combining “how to” with words meaning removal
(e.g., “remove”, “delete”) and the names of cyber threats. We found that 9.7%
(438/4,510) of the search queries combined words meaning removal with the
names of cyber threats. Users also searched for the names of cyber threats alone
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Table 3. Top 10 social media that led
to FRAD sites.

Social media # of FRAD sites

Youtube 160

Facebook 111

Reddit 58

Quora 35

Pinterest 22

Pocket 9

Twitter 7

Linkedin 6

Instagram 5

Table 4. Top 10 categories of referral web
pages to FRAD sites.

Category of referral web pages #

Computers electronics and technology 517

Games 29

News and media 25

Science and education 22

Business and consumer services 20

Arts and entertainment 19

Hobbies and leisure 8

Adult 8

Reference materials 7

E-commerce and shopping 6

(18.8%, 849/4,510) of for software or OS error messages (e.g., “MSVCP140.dll
missing”). Thus, many users reach FRAD sites by searching for cyber threats
and corresponding removal guides. The names of fake AV software were also
used as search queries to reach FRAD sites (66/1,802). We found that 11.6%
(522/4,510) of the search queries were used to search for downloads of software
such as office software or video games and guides of cracking them. Forty percent
(1,802/4,510) of the search queries were not included in these categories.

Social Media. We also analyzed incoming traffic from social media. We inves-
tigated 167 FRAD sites for which statistical data for queries incoming from
social media is available from SimilarWeb. Table 3 shows the top 10 social media
that led users to FRAD sites and the number of FRAD sites to which users
were redirected from each type of social media. Users visited 95.8% (160/167)
of FRAD sites from YouTube and 66.5% (111/167) of those from Facebook.
Attackers create social-media accounts for these FRAD sites and post videos or
messages to lure users to FRAD sites. These accounts pretended to be official
accounts that use the web-site names or domain names of FRAD sites. They
introduce removal information for cyber threats in the same way as entries for
FRAD sites, and they put hyperlinks leading to FRAD sites in the description
of their videos and messages. We found that some accounts post such instruction
videos on YouTube several times a day. These videos got as many as 700k views.
We also found that attackers created such accounts across multiple social media.
In summary, attackers not only optimize search results to lead users directly to
FRAD sites, but also they use various social media to increase user accesses to
FRAD sites.

Referrals. In addition, we investigated referral traffic that leads users to FRAD
sites. In other words, we analyzed the incoming traffic to FRAD sites when users
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accessed them from other web pages, excluding search engines and social media.
We found that users visited 891 web pages belonging to various categories before
reaching FRAD sites. Table 4 shows the top 10 SimilarWeb categories of these
referral web pages. The most common category of referral web page is Computers
Electronics and Technology, which includes forum and community sites such as
social.technet.microsoft[.]com., ubuntuforums[.]org, and discussions.apple[.]com.
In most cases, attackers abuse these sites, where anyone can post messages,
to impersonate good users who introduce removal information for cyber threats
with URLs of FRAD sites. The web pages categorized as Games (e.g., steamcom-
munity[.]com) were used in the same manner. Attackers also posted FRAD sites’
URLs in comment sections in articles in News and Media and other categories.
In short, attackers leverage popular web pages where they can post comments
and hyperlinks to lure users to visit FRAD sites.

6.2 Downloads and Page Transitions from FRAD Sites

To identify threats that occur when users access FRAD sites, we performed an
additional crawling experiment. While we simply found FRAD sites using our
system in Sect. 5, and we investigated users’ incoming traffic to them in Sect. 6.1,
the malicious activity derived from them was not revealed by these experiments.
Therefore, we actively crawled the FRAD sites and collected installers of fake AV
software and their respective distribution sites. To this end, we added a function
to the crawler of our system to enable it to detect a download button on an
FRAD site and click it. Then we analyzed the downloaded files and transferred
the web pages from those FRAD sites.

Collecting File Downloads and Web-Page Transitions. We first describe
the details of the new function that enables our crawler to interact with the
FRAD sites. The crawler crops images with areas that match the a tag and
img tag elements of FRAD sites. If the crawler finds a “download” string in the
images using optical character recognition, it clicks on that area. We used two
types of UserAgent with different OS (Windows 10 and macOS v10.14). This is
because FRAD sites change the fake AV software to be distributed according to
the UserAgent’s OS, typically Windows or Mac. To collect the URLs of FRAD
sites to crawl, we searched for the 2,913 domain names of FRAD sites using
Bing API and selected up to three URLs based on the search results for each
domain name. The reason for this is that web pages of FRAD sites with the
same domain names can lead to different destinations (e.g., different software
distribution sites) depending upon their URLs. To find more fake AV software,
we collected 8,099 URLs and crawled them twice with two types of UserAgent.
As a result, the crawler downloaded 4,548 files with 594 unique MD5 hash values
and reached 136 domain names (630 URLs) of web pages from FRAD sites. In
the following, we investigated the downloads of fake AV software originating
from the FRAD sites (i.e., 3 in Fig. 1 in Sect. 2), web pages transferred from
those sites (i.e., 2 in Fig. 1), and redirectors that relayed these downloads and
web page transitions.
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Fake AV Software Downloaded from FRAD Sites. We analyzed the files
that our crawler downloaded (see 3 in Fig. 1) to identify the installers of fake
AV software. First, we checked 594 files with unique MD5 hash values on Virus-
Total and found that 89 of those files had been detected. To specify fake AV
software families from the detected files, we manually analyzed and searched
them using their filenames and metadata (e.g., product name, legal copyright,
and file description) read by ExifTool13. We examined whether the 89 files were
related to malware removal, registry fix, or speed up based on the above infor-
mation and on the software distribution sites that we obtained from the search
results. We classified 84 files into 58 unique fake AV software families with differ-
ent software names. All 58 fake AV software families have software distribution
sites reachable from search engines. The software distribution sites profess to be
official sites for these fake AV software families. For example, these sites show
download and purchase menus and provide customer support such as web chats
or toll-free calls. The remaining five detected files were not fake AV software but
instead were malware that pretend to be installers of legitimate software, such
as music-production software and video games.

To find more fake AV software from the 505 undetected files, we compared
their filenames and metadata with those of the classified 58 fake AV software
families. As a result of determining files with the same strings as the fake AV
software, we additionally found 189 files to be fake AV software. Overall, we
found 278 files (31 dmg files and 247 exe files) of the 58 fake AV software families.

Web Pages Transferred from FRAD Sites. We also analyzed the web pages
of 136 domain names that our crawler reached after clicking on download buttons
(see 2 in Fig. 1). In the above measurements, we investigated fake AV software
directly downloaded from FRAD sites. However, FRAD sites also navigate users
to software distribution sites that lure them to purchase and download fake AV
software. To find such web pages, we analyzed the crawled data (e.g., screenshots
of web pages) and manually classified the malicious web pages. We first checked
the 136 domain names on VirusTotal and found that 57 domain names were
detected. We then specified the web pages that offered license purchases of known
fake AV software or were related to malware removal, registry fixes, and speed-
up from the web pages of the 57 detected domain names. We found that 34
domain names were related to distributions of fake AV software, including six
domain names of payment sites and 27 domain names of software distribution
sites. The payment sites required inputting credit card numbers and personal
information to purchase fake AV software. Out of the 27 domain names, we
found that 18 domain names were distribution sites for 18 new fake AV software
families in addition to the measurements described above, where we found 58
fake AV software families. Thus, we found 76 fake AV software families in total.
The detected domain names also included five domain names of FRAD sites that
we found in Sect. 5. That is, users may be transferred from one FRAD site to
another. We also found malicious web pages that distribute malicious Chrome
13 https://exiftool.org/.

https://exiftool.org/
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Table 5. The percentage of FRAD sites included in search results.

Threat name
<threat name>

remove
<threat name>

how to remove
<threat name>

Malware 69.4% 87.9% 87.9%

Domain name 88.5% 93.5% 88.0%

Extension 36.1% 85.1% 87.2%

Total 70.6% 89.7% 87.8%

extensions. We found 14 domain names associated with such threats and four
domain names related to distributions of other types of malware.

Redirectors. To reveal the network infrastructure related to the distribution
of fake AV software, we investigated the redirectors that relayed the above fake
AV software downloads and web page transitions. We analyzed the network
traffic that our crawler captured and extracted redirectors for which the effec-
tive second-level domains (e2LD; e.g., example.com is a e2LD of www.example.
com) are different from those of the source web pages (i.e., the FRAD sites) and
destination web pages. We found 169 domain names (38 e2LD names) as redirec-
tors of 1,048 URL redirections associated with fake AV software downloads and
web transitions to software distribution sites. Nine of these domain names were
known advertising domain names listed in EasyList14. In addition, we found a
small number of redirectors that were involved in many fake AV software distri-
butions. For example, we found that 76.4% of the URL redirections were asso-
ciated with just two domain names: safecart[.]com and revenuewire[.]net. These
two redirectors navigated to 17 and 14 fake AV software families, respectively.
The domain name safecart[.]com not only is a redirector but also is a payment
web page that prompts users for their credit card numbers. Some redirectors,
such as reimageplus[.]com and paretologic[.]com, which are software distribution
sites, navigated to other software distribution sites.

6.3 Search Poisoning

We conducted a further measurement experiment to analyze the percentage of
FRAD sites in the search results. In Sect. 6.1, we used statistical data to inves-
tigate search queries that users used to reach FRAD sites. Then, we determined
the risk of users reaching these FRAD sites by actually searching with those
search queries and analyzing the search results. When users search for specific
names of cyber threats to find removal information, many FRAD sites promi-
nently show up in search results. To confirm these poisoned search results, we
investigated 150 search queries, combining 50 cyber threats and three search
patterns. The three search patterns are those that users frequently use, as found

14 https://easylist.to/.

www.example.com
www.example.com
https://easylist.to/
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in the measurements in Sect. 6.1: “how to remove” and the name of a cyber
threat, “remove” and the name of a cyber threat, and only the name of a cyber
threat. We extracted the latest names of cyber threats from public lists: 20 mal-
ware detection names from Symantec Security Center and 20 malicious domain
names from malwaretips[.]com. Also, we randomly chose 10 malicious browser
extensions out of 14 browser extensions that we found in Sect. 6.2. We investi-
gated the top 10 search results for each search query, which are the top result
pages from popular search engines such as Google and Bing.

We collected 1,461 web pages from the top 10 search results for each of
the 150 search queries in total. By matching the 2,913 domain names of the
FRAD sites collected in Sect. 5.2, we found that 1,207 web pages (82.6%) were
FRAD sites. Table 5 shows the percentages of FRAD sites included in the search
results for each search query and the names of the cyber threats. When we
searched for the names of cyber threats with “how to remove” or “remove,”
the percentages of FRAD sites were 87.8% and 89.7%, respectively. The FRAD
sites were also included at a high rate in the results of searching only for the
names of cyber threats. In particular, 88.5% of search results for the domain
names were FRAD sites. Search results for malicious browser extensions did
not include many FRAD sites (36.1%), but there was less useful information
available for users to use to remove the threats or determine whether they are
malicious. We also found 22 YouTube web pages as search results, with videos
and descriptions that introduced FRAD sites. We found that 26.7% (40/150)
of the search queries returned search results for which the top 10 web pages
were all FRAD sites. In summary, we found that most of the search results were
occupied by FRAD sites when users searched for removal information for cyber
threats, making it difficult for users to reach correct information.

7 Discussion

Ethical Considerations. We followed research ethics principles and best prac-
tices to conduct this study [3]. We analyzed users’ behavior to visit FRAD sites
using anonymized statistical data on user accesses for this study. We purchased
a license to access data that is legally collected based on SimilarWeb’s privacy
policy. The information extracted from the web pages we crawled is publicly
available data. To reduce server load, our experiment that interacted with down-
load buttons was performed only once for each web page that we identified as
an FRAD site.

Limitation. Although our system can accurately identify FRAD sites, there
are some limitations. Since our system is specialized for collecting and detecting
FRAD sites, which are the important platforms used by attackers to distribute
fake AV software, detecting software distribution sites is out of scope for this
paper. We identified software distribution sites that pretended to be official sites
for legitimate AV software on the basis of detection results from VirusTotal
and manual analysis. We showed that we can visit various software distribu-
tion sites from FRAD sites by clicking on the FRAD sites. We also found that
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these software distribution sites share common network infrastructures, such as
ad networks and redirectors. Thus, further analyses focusing on the web pages
arriving from the FRAD sites collected by our system should support efficient
collections of software distribution sites.

We then discussed a technique that can be used to evade our classification of
FRAD sites. Developers of FRAD sites employ phrases related to the removal
information for threats in domain names, URLs, titles, and text contents. This
is because they use the topic of the web pages to attract or persuade users.
They also place logos of trusted companies to disguise FRAD sites as legitimate
sites. A possible evasion technique would be to remove these characteristics that
psychologically affect users. However, this also would reduce the interest of users
and the usefulness of the FRAD sites to the attackers. In addition, excluding
phrases related to malware removal lowers the SEO rankings of FRAD sites and
user accesses. Since our system relies on these characteristics to identify FRAD
sites, we can accurately detect high-risk FRAD sites that strongly affect the
users’ psychology.

Since our collection of FRAD sites depends on search engine results, we have
not collected all FRAD sites on the Internet. To efficiently collect FRAD sites,
we used the names of the cyber threats that are mainly used by attackers to
lure users and leverage search engines, which are the most common channel to
lead a user to FRAD sites. As a result, our analysis found that FRAD sites are
created in many languages and have a large amount of user access. Our system
is useful for continuously collecting FRAD sites to create URL blacklists and for
analyzing trends for this type of attack.

8 Related Work

We have reviewed related work that investigated the distribution infrastructure
for fake AV software and the social engineering techniques attackers use to trick
users. Using a combination of unsupervised, graph-based clustering, Cova et
al. analyzed the network infrastructure (e.g., domain registration information
and IP addresses) of fake AV software distributions to reveal their ecosystem
and attack campaigns [2]. Although they investigated the relationship of servers
hosting fake AV software, they did not discuss how users access these web pages.
Rajab et al. conducted a measurement study that discovered web pages related
to the distribution of fake AV software from data collected by Google [18]. They
showed the prevalence of fake AV software in malware distributions on the web.
Stone-Gross et al. proposed an economic model and estimated attackers’ revenue
by analyzing back-end servers that attackers used to support fake AV software
businesses [23]. They identified the incoming channels that users employ to reach
distribution sites, such as landing pages that exploit browsers to redirect users.
They also described the social engineering techniques used to install fake AV
software using web pages that display fake infection alerts. Although these stud-
ies analyzed the infrastructure and traditional distribution techniques for fake
AV software–such as drive-by downloads and fake infection alerts–new distribu-
tion tactics using FRAD sites have not been revealed. There is also related work
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that describes case studies of fake AV software distribution from social engineer-
ing aspects [1,4–6,8–10,13–16,19–21,25,27–29]. In most studies, they analyzed
fake infection alerts via advertisements that threaten or attract users to install
fake AV software. However, no previous study has focused on the FRAD sites or
analyzed attackers’ techniques that exploit the psychological weakness of users
who are suffering security problems.

9 Conclusion

We have proposed a system to crawl the web and automatically identify FRAD
sites that introduce fake removal information for cyber threats and lure users
to fake AV software. Using the proposed system, the first comprehensive mea-
surement study was conducted to disclose the ecosystem of distributing fake AV
software via FRAD sites. We have analyzed both passively collected statistical
data on user accesses and actively crawled data to clarify users’ risky behav-
ior that leads them to reach FRAD sites and which exposes them to attacks
navigated from FRAD sites. Our findings emphasize that it is very difficult for
users who are suffering from cyber threats to reach correct removal informa-
tion, because search results related to the specific cyber threats are poisoned
by FRAD sites. Our system is useful for search engine providers and security
vendors for excluding and blocking FRAD sites.
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