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Abstract. In this paper, we present a new view on how the concept of
rough sets may be interpreted in terms of statistics and used for rea-
soning about numerical data. We show that under specific assumptions,
neighborhood based rough approximations may be seen as statistical
estimations of certain and possible events. We propose a way of choos-
ing the optimal neighborhood size inspired by statistical theory. We also
discuss possible directions for future research on the integration of rough
sets and statistics.

Keywords: Rough sets · Statistical learning · Neighborhood based
rough sets

1 Introduction

Zdzis�law Pawlak introduced rough sets in 1982 to deal with inconsistencies
within information tables [15]. His approach is applied to the representation
of classes of objects in an information table using two new sets called lower
and upper approximation. The lower approximation contains objects which cer-
tainly belong to the approximated class, while the objects which are possibly in
the approximated class are included in the upper approximation. Formulated in
another way, the approach identifies the objects which are certainly consistent
with the available knowledge and the objects which are possibly consistent with
it. The original method is designed to deal with categorical data or data with a
finite domain.

The extension of the model to numerical data faces some difficulties. One
possibility to deal with numerical data is to discretize the attributes in the
information table and make them categorical [7]. However, such an approach
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may lead to a loss of information, since discretization considers a set of values
as one single value. The other option are neighborhood based rough sets where
the equivalence class from Pawlak’s approach is replaced with the neighborhood
of an object in a high dimensional Euclidean space [9]. They are related to sim-
ilarity based rough sets [21], and are part of the more general family of covering
based rough sets [26]. The third approach are fuzzy rough sets which use fuzzy
generalizations of equivalence relations suitable for application to numerical data
[5]. In this paper, we use probability and statistics instead of fuzziness to model
uncertainty in data.

From the very beginning, it was acknowledged that Pawlak’s approach runs
into limitations when it comes to problems which are more probabilistic than
deterministic in nature [27]. In general, data consist of true values affected by
some noise. Therefore, the first step in data analysis is to remove that noise in
order to use the real values to solve the problem of interest. As a robust version of
rough sets, the Variable Precision Rough Set (VPRS) approach was proposed by
Ziarko [27]. It was also the first attempt to integrate the probabilistic approach
and rough sets. Other probabilistic versions of rough sets were presented later,
including decision theoretic rough sets [25] and parameterized rough sets [6].
Later on, Ziarko also introduced the assumption that the data are just a sample
from an unknown space [28] into rough sets. That is a widely used assumption in
statistics and machine learning: data are a realization of a random variable. With
this assumption, we seek for a deeper integration of rough sets and statistics. In
this paper, we propose a new view on the definition of rough sets, and provide a
new definition independent of the type of data. It leads to a natural extension of
the initial rough set approach to numerical data. We provide an example how to
calculate rough sets for numerical data, elaborate on some of issues we are facing
and present some ideas about how to direct the future research on integration
of rough sets and statistics.

The paper is organized as follows. In the next section we recall basic con-
cepts of rough set theory. In Sect. 3, statistical learning theory for Pawlak’s rough
sets is introduced. Section 4 presents rough approximations for numerical data.
Section 5 identifies and discusses some potential pitfalls and drawbacks identi-
fied in Sect. 4 together with ideas for improvement. Conclusions are provided in
Sect. 6.

2 Preliminaries

2.1 Rough Sets

An information table is a 4-tuple <U,Q∪{d},X ∪Y, f> where U = {u1, . . . , un}
is a finite set of objects or alternatives, Q = {q1, . . . , qm} is a finite set of
condition attributes, d is a decision attribute; X = ∪q∈QXq, where Xq is the
domain of attribute q ∈ Q while Y is the domain of d. The information function
f : U × Q ∪ {d} → X ∪ Y satisfies that ∀u ∈ U,∀q ∈ Q : f(u, q) ∈ Xq and that
f(u, d) ∈ Y . Denote by XQ =

∏
q∈Q Xq the joint domain of condition attributes,
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while f(u,Q) ∈ XQ represents the |Q|-tuple of values f(u, q) for q ∈ Q. If Xq is
finite, we say that q is categorical, while if Xq ⊆ R we say that q is numerical.

First we assume that all condition attributes are categorical. We define the
equivalence relation ≡ on objects u and v as u ≡ v ⇔ ∀q ∈ Q, f(u, q) = f(v, q).
This means that two objects are related (indiscernible) if they are equally eval-
uated on all attributes. Let [u]≡ denote the equivalence class of object u, and
A ⊆ U . We recall Pawlak’s lower and upper approximations on U :

apr≡(A) = {u ∈ U |[u]≡ ⊆ A}, apr≡(A) = {u ∈ U |[u]≡ ∩ A 
= ∅}.

In the lower approximation of A, we include objects u for which all identically
evaluated objects are also in A. Therefore, we may conclude that u for sure
belongs to A based on available knowledge, since all the instances with the same
values are also in A. We include object u in the upper approximation of A if
there is an instance in A identically evaluated as u. Hence, we may say that u
is possibly in A if some instances, identically evaluated as u, are in A. In this
way, we distinguish certain and possible knowledge. Below, we list the important
properties of inclusion and duality [15]:

– (inclusion) apr≡(A) ⊆ apr≡(A),
– (duality) apr≡(Ac) = (apr≡(A))c, apr≡(Ac) = (apr≡(A))c.

A question arises: how to apply a similar reasoning when we have numerical
data? If we apply the reasoning presented above, the equivalence classes will
mostly consist of only one object since it is almost impossible that two objects
with numerical characteristics will be identically evaluated on all attributes. This
means that all objects from A belong to the lower approximations of A, i.e., all
objects from A certainly belong to A. However, in this way we ignore the fact
that the noise present in data affects the certainty of objects belonging to a
set. The noise is related to imprecision of numerical attributes and, even if the
measurement of numerical attributes is precise, to human perception of these
precise values.

A way to handle this problem is the neighborhood based rough set app-
roach. Assume now that condition attributes are taking real values and let
d be Euclidean distance on XQ ⊆ R

m. Here, any distance metrics can be
used, but Euclidean distance corresponds with the later statistical approach
we will use. For object u ∈ U we define its ε-neighborhood nε(u) = {v ∈
U ; d(f(u,Q), f(v,Q)) < ε}. We define the approximations in the following
way [9]:

apr
ε
(A) = {u ∈ U ;nε(u) ⊆ A}, aprε(A) = {u ∈ U ;nε(u) ∩ A 
= ∅}.

Here, object u certainly belongs to A if its close neighborhood only contains
objects from A. Object u possibly belongs to A if its close neighborhood contains
at least one object from A. Equivalent properties of inclusion and duality also
hold in this case [9].

From the definition we may see that the approximations heavily depend on
the parameter ε. The question is, what is the optimal neighborhood size which
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will identify certain and possible knowledge. Later on we will see that statistical
techniques may be useful for this purpose.

2.2 Value-Based Definitions and Inconclusive Regions

Pawlak defines the approximations as sets of objects (SO). The main goal of
these definitions is to distinguish possible knowledge from certain knowledge
and for this we do not need to refer exactly to the set of objects. We can define
the approximations as sets of values (SV), i.e., the sets which will only contain
values from the domain of condition attributes. Let x ∈ XQ. Similarly as in [8]
we define sets [x] = {u ∈ U ; f(u,Q) = x}. The SV approximations are

aprSV≡ (A) = {x; [x] 
= ∅ ∧ [x] ⊆ A}, aprSV≡ (A) = {x; [x] ∩ A 
= ∅}.

We refer to this definition as SV definition while the original one will be called
SO definition. We note that the SV definition keeps the same knowledge as the
SO definition. The SO approximations can be obtained from the SV definition
by collecting all objects with condition values belonging to the SV approxima-
tions (lower or upper). The SV approximations can be obtained from the SO
definition as a set of unique condition values f(u,Q) of the objects from the
SO approximations. Therefore, in terms of Pawlak’s environment of categorical
data, SO and SV definitions are equivalent.

We notice that there are values from the domain which cannot be assigned
to any approximation. In particular, the condition |[x]| > 0 is necessary in the
definitions. Otherwise a value x for which |[x]| = 0 would belong to the lower
approximations of A and Ac at the same time, i.e., it would certainly belong
to two opposite classes. Of course, that is not possible and such values from
the domain are called inconclusive. We denote the set I ⊆ XQ of inconclusive
values by

I = {x;x ∈ XQ ∧ [x] = ∅}
The inclusion property is clearly preserved while duality still holds if the com-
plement operator on XQ excludes inconclusive values i.e., if it is defined as:
Sc = XQ − I − S for S ⊆ XQ.

On the other hand, for the SV extension in the neighborhood based approx-
imations, neighborhood may be defined for any value from the domain XQ. If
XQ ⊆ R

m and x ∈ XQ we define nε(x) = {u ∈ U ; d(x, f(u,Q)) < ε}. The SV
approximations are:

aprSV
ε

(A) = {x;nε(x) 
= ∅ ∧ nε(x) ⊆ A}

aprSVε (A) = {x;nε(x) ∩ A 
= ∅}.

An arbitrary value x ∈ XQ is in the lower approximation of A if its ε-
neighborhood contains only objects from A while it is in the upper approxi-
mation if it contains at least one object from A. Here again we consider the
inconclusive areas, i.e., values in which neighborhood there are no objects from
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U . As for the SV definitions for Pawlak’s rough sets, the inclusion property is
preserved while duality holds with exclusion of the inconclusive areas. The SO
and SV definitions are not equivalent in this case since SV is more general, and
SO can be obtained from it, but not vice versa. For example, there can exist
a value x ∈ XQ such that its neighborhood contains exactly one object u ∈ A
and no elements from Ac, and such that u is not in the SO lower approxima-
tion of A. The latter holds in particular if there exists some v ∈ Ac such that
d(f(u,Q), f(v,Q)) < ε. However, x belongs to the SV lower approximation, and
such x cannot be reconstructed from the SO lower approximation.

We will use the SV definition to derive a statistical extension of rough sets
to numerical data.

3 A Statistical View of Pawlak’s Rough Sets

One widely used assumption in statistics and machine learning (ML) is that data
are realizations of a joint random variable. Let objects be outcomes of the joint
random variable U = (X ,Y) where X is a random variable corresponding to the
condition attributes, while Y corresponds to the decision attribute. Since we are
dealing with classification problems, we know that Y is always discrete, while
X is discrete if we work with categorical data, or X takes values from R

m if we
have numerical data. Those random variables are unknown in practice, so using
data as their realizations, we explain the relations between X and Y.

The idea here is to redefine the approximations in terms of random variables
instead of data. The SV approximations were defined on the domain w.r.t. neigh-
borhood operators, while here the approximations are defined on the domain
w.r.t. a random variable. In terms of statistics these are the “true” approxima-
tions dependent on unknown random variables. The SV approximations on data
will play the role of estimators of such approximations.

Since Y is discrete, assume that its domain is the set {0, 1, . . . ,K} for
some K. Classification tasks in machine learning often refer to calculation of
the conditional probabilities of the particular classes. More formally, for class
k ∈ {0, 1, . . . ,K} we want to model the expression P (Y = k|X = x) as a
function of x for all x from the domain space (either a space of categories or
R

m). Assume now that the domain XQ of X is finite i.e., X is discrete. If cer-
tainty is modeled in a probabilistic environment, we say that an event is cer-
tain if its probability is 1 while an event is possible if its probability is greater
than 0. We want to know if value x ∈ XQ certainly belongs to class k, i.e., if
P (Y = k|X = x) = 1. In practice, we do not have exact knowledge about the
conditional distribution of Y on X , so we need to estimate it. We recall the set
of objects U = {ui = (xi, yi)|i = 1 . . . n} which is now a set of realizations of
random variable U , known as a sample. The empirical estimation of the above
mentioned conditional probability is

P̂ (Y = k|X = x) =
∑n

i=1 1{yi=k,xi=x}
1{xi=x}

=
|{ŷ = k}| ∩ |{x̂ = x}|

|{x̂ = x}| ,
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where 1A is the indicator function, |{ŷ = k}| is the number of objects yi equal
to k, while |{x̂ = x}| is the number of objects xi equal to x. To estimate the set
of values x for which P (Y = k|X = x) = 1, we use the estimated probability
instead of the true one. We have that:

|{ŷ = k}| ∩ |{x̂ = x}|
|{x̂ = x}| = 1 ⇔ |{ŷ = k}| ∩ |{x̂ = x}| = |{x̂ = x}| ∧ |{x̂ = x}| > 0

⇔ {x̂ = x} ⊆ {ŷ = k} ∧ |{x̂ = x}| > 0.

We obtain

{x ∈ XQ; P̂ (Y = k|X = 1)} = {x ∈ XQ; |{x̂ = x}| > 0 ∧ {x̂ = x} ⊆ {ŷ = k}}.

The right side of the latter equality is identical to the SV definition of Pawlak’s
rough sets, where [x] is replaced by {x̂ = x} while A is replaced with {ŷ = k}.
Here, it can be noticed that the SV lower approximation may be seen as an
estimation of the unknown lower approximation dependent on random variables.
A similar procedure may be used for the upper approximation. This leads to the
definition of the lower and upper approximations of the class k with respect to
random variable X :

aprRV
X (Y = k) = {x;P (Y = k|X = x) = 1}, (1)

aprRV
X (Y = k) = {x;P (Y = k|X = x) > 0}.

We call this the RV definition of rough sets. Such defined “true” approximations
do not require any assumptions on X (X being discrete or continuous) as long
as the conditional probability is defined. This version of the approximations pro-
vides a natural extension of rough sets to numerical data (and all other types of
data). In practice, approximation estimates for categorical and numerical data
are different since the probability estimation is different in the discrete and the
continuous case. We have already seen the estimation of the lower approximation
for categorical data. Later on it will be shown how to estimate the approxima-
tions in the numerical case. The RV rough set definitions can be taken out of
the context of classification and they can be extended to arbitrary events. Let A
be an event and X be a random variable. The lower and upper approximations
of A w.r.t. X are defined as:

aprRV
X (A) = {x;P (A|X = x) = 1}, aprRV

X (A) = {x;P (A|X = x) > 0}.

However, such general definition will not play an important role for our goal,
but it may find some other applications in data analysis.

4 Rough Approximations for Numerical Data

In the previous section we have seen how the approximations may be estimated in
practice when we deal with categorical data, and that such estimation coincides
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with Pawlak’s approach. Since the approximations do not depend on the type of
data, the question is how to estimate them for numerical data. To make things
simpler, we assume that classification is binary, i.e., K = 1, and we only have two
values for the variable Y, 0 and 1. Assume also that the domain of X is XQ ⊆ R

m

i.e., X is a continuous random variable. By fX we denote the probability density
function (PDF) of X , while by fY(k) = P (Y = k) we denote the PDF of the
binary random variable Y. The joint PDF of Y and X is denoted as fY,X . From
probability theory it holds that fY(0) + fY(1) = 1, fX (x) > 0 for x ∈ XQ and∫

XQ
fX (x)dx = 1. We calculate the approximations of class 1. Probability theory

tells us that:

P (Y = 1|X = x) =
fY,X (1, x)

fX (x)
= 1 − fX (x) − fY,X (1, x)

fX (x)
= 1 − fY,X (0, x)

fX (x)
.

For the lower approximation we have that

P (Y = 1|X = x) = 1 ⇔ 1 − fY,X (0, x)
fX (x)

= 1 ⇔ fY,X (0, x)
fX (x)

= 0 ⇔ fY,X (0, x) = 0.

The last equality can be divided by fY(0) and we get the condition fX|Y=0(x) =
0. Here fX|Y=0 stands for the conditional PDF of X on event {Y = 0}. For the
upper approximation we have:

P (Y = 1|X = x) > 0 ⇔ fY,X (1, x)
fX (x)

> 0 ⇔ fY,X (1, x) > 0.

The last equality can be divided by fY(1) and we get the condition fX|Y=1(x) > 0.
The conclusion we may derive from the calculations is that x certainly belongs

to class 1 if the conditional PDF of X on {Y = 0} evaluated in x is 0. We have
that x possibly belongs to class 1 if the conditional PDF of X on {Y = 0}
evaluated in x is greater than 0. These conditions depend on conditional PDFs
which are unknown in practice and have to be estimated. More precisely, we need
to estimate the so-called level sets, i.e., areas on which the PDF is smaller or
greater than some value [2]. In our case, the thresholds we consider for the PDFs
are when they are equal to 0 and greater than 0 (lower and upper approximation).

The estimation of level sets is an emerging field in statistics and ML [2,3,20].
Such estimations are essentially different from estimating the PDF itself since
we are searching for good estimators for a particular area of the PDF, not for
the whole PDF.

Below we present a naive approach of estimating level sets using the estima-
tion of the PDF. Density estimation is a well studied area of statistics [18,19,23].
The main methods are histogram density estimation, kernel density estimation
(KDE) and nearest neighbour density estimation. Histograms are known for per-
forming badly in high dimensions [18], while the nearest neighbour methods do
not assume that there are areas where the PDF is equal to 0 [14]. For these
reasons, KDE appears the most appropriate choice to calculate level sets. We
refer the reader to [19] for an overview of density estimation methods.
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4.1 Rough Sets and KDE

A kernel K : Rm × R
m → R is a positive and symmetric mapping for which

it holds that ∀t ∈ R
M ,

∫
Rm K(t, s)ds = 1 [24]. It may be seen as a measure of

similarity between points from R
m. The kernel density estimator is defined as:

f̂K(t) =
1
n

n∑

i=1

K(t, ti),

where {t1, t2, . . . , tn} is a given sample from the unknown PDF f . The motivation
behind this definition is that if x has more points in its proximity, then value
f̂K(x) will be larger, which indicates an area of higher density.

Similarity measures are usually based on distances between points since, intu-
itively, the closer points are, the more similar they are to each other. Therefore,
we use kernels based on Euclidean distance, called radial kernels [12]:

K(x, y) =
1
h

k

(‖x − y‖
h

)

.

The notation ‖·‖ stands for the standard norm on R
m, h is a positive real

parameter called bandwidth while k is a univariate positive function. Using radial
kernels, the PDF estimator becomes:

f̂k,h(x) =
1

nhm

n∑

i=1

k

(‖x − xi‖
h

)

. (2)

From before we have that the lower approximation can be formulated as:

aprRV
X (Y = 1) = {x; fX|Y=0(x) = 0}.

Therefore, using (2) we get the estimator of the lower approximation:

aprRV
X̂ (Y = 1) = {x; f̂k,h

X|Y=0(x) = 0}.

Although it is not possible that fX|Y=0(x) = 0 and fX|Y=1(x) = 0 at the
same time, it may happen that f̂k,h

X|Y=0(x) = 0 and f̂k,h
X|Y=1(x) = 0 for some

x. Such values we will denote as inconclusive and we will exclude them from the
approximations, as before. Following this, we redefine the estimation of the lower
approximation:

aprRV
X̂ (Y = 1) = {x; f̂k,h

X|Y=0(x) = 0 ∧ f̂k,h
X|Y=1(x) > 0}. (3)

Henceforth we will focus on the lower approximation. A very similar proce-
dure can be used to estimate the upper approximation.

We have to decide which area satisfies the condition from (3). To estimate
fX|Y=0 we use objects from class 0 and to estimate fX|Y=1 we use objects from
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class 1. Recall U = {(x1, y1), . . . , (xn, yn)} as the set of objects or the sample.
Set U is split into two subsets; objects which belong to class 0, and objects which
belong to class 1. We denote those sets U0 = {(x0

1, 0), (x0
2, 0), . . . , (x0

n0
, 0)} and

{U1 = (x1
1, 1), (x1

2, 1), . . . , (x1
n1

, 1)}. To estimate the conditional PDFs fX|Y=0

and fX|Y=1 we use the objects from U0 and U1 respectively. To estimate the
level set fX|Y=0(x) = 0 we have to find values of x for which f̂k,h

X|Y=0(x) = 0

and to estimate fX|Y=1(x) > 0 we are searching for x where f̂k,h
X|Y=1(x) > 0. It

follows that:

1
nh

n0∑

i=1

k

(‖x − x0
i ‖

h

)

= 0 ⇔ ∀i ∈ {1, . . . n0}; k

(‖x − x0
i ‖

h

)

= 0.

1
nh

n1∑

i=1

k

(‖x − x1
i ‖

h

)

> 0 ⇔ ∃i ∈ {1, . . . n1}; k

(‖x − x0
i ‖

h

)

> 0.

The derivation up to now is general and holds for all functions k and bandwidths
h. The question is, which kernel best suits the last condition. The most used ker-
nel in practice is the Gaussian kernel which is also radial: k(x) = 1√

(2π)m
e− 1

2x2
.

Its main drawback is that it is nowhere equal to 0. It is used under the assump-
tion that there are no impossible or certain events which is not the case here.
Therefore, a better choice would be a kernel with different assumptions. In par-
ticular, we require a kernel for which k is bigger than 0 on a bounded set i.e., a
kernel with bounded support (Fig. 1).

Fig. 1. Kernel examples in univariate case

The theory developed in [13] states that the smallest estimation error under
certain conditions is achieved for the Epanechikov kernel. The Epanechikov ker-
nel is radial with

k(x) = max
{

0,
m + 2
2cm

(1 − x2)
}

,

where cm is the volume of the m-dimensional unit ball. According to the def-
inition, its support is the unit hypersphere, which implies that it is bounded.
Another kernel with bounded support is the spherical uniform kernel, i.e., the
constant radial kernel for which
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k(x) =

{
1

cm
if x ∈ (0, 1)

0 otherwise.

Let he and hu be the bandwidths corresponding to the Epanechikov kernel
and spherical uniform kernel, respectively. For the Epanechikov kernel, we have
that:

k

(‖x − x0
i ‖

he

)

= 0 ⇔ m + 2
2cm

(

1 − ‖x − x0
i ‖2

h2
e

)

≤ 0 ⇔ ‖x − x0
i ‖ ≥ he,

k

(‖x − x1
i ‖

he

)

> 0 ⇔ m + 2
2cm

(

1 − ‖x − x1
i ‖2

h2
e

)

> 0 ⇔ ‖x − x1
i ‖ < he,

while for the spherical uniform kernel it holds that:

k

(‖x − x0
i ‖

hu

)

= 0 ⇔ ‖x − x0
i ‖ ≥ hu, k

(‖x − x1
i ‖

hu

)

> 0 ⇔ ‖x − x1
i ‖ < hu,

In both cases, value x certainly belongs to class 1 if in the neighborhood there
are no objects from the opposite class and there are some objects from the same
class. Hence, by using kernels with bounded support, we obtain simple conditions
for estimating the lower approximations.

4.2 Relationship to Neighborhood Based Rough Sets

We summarize the results obtained so far: we defined the lower approximation
of class {Y = 1} as : aprRV

X (Y = 1) = {x; fX|Y=0(x) = 0} for continuous random
variable X . We estimated the approximation by estimating the PDF from the
expression using kernel density estimators as:

aprRV
X̂ (Y = 1) = {x; f̂K

X|Y=0(x) = 0 ∧ f̂K
X|Y=1(x) > 0}.

We have shown that the estimators for certain radial kernels with bounded sup-
port lead to the expression:

aprRV
X̂ (Y = 1) = {x;∀i : ‖x − x0

i ‖ ≥ h ∧ ∃i : ‖x − x1
i ‖ < h},

for some h. Let us write the neighborhood definition replacing ε with h: nh(x) =
{xi ∈ U ; d(x, xi) < h}, where d is the Euclidean distance. Condition ∃i : ‖x −
x1

i ‖ < h means that there is at least one object from U1 in nh(x), i.e., nh(x) 
= ∅,
while ∀i : ‖x − x0

i ‖ ≥ h means that there are no objects from U0 in nh(x), i.e.,
nh(x) ⊆ U1. It follows that the approximation estimator can be written as:

aprRV
X̂ (Y = 1) = {x;nh(x) 
= ∅ ∧ nh(x) ⊆ U1}.

The latter expression is exactly the SV (set of values) definition of the neighbor-
hood based rough sets. We can conclude that the estimators of the RV approx-
imations coincide with the SV definition of the neighborhood based rough sets.
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The advantage of this representation of the neighborhood based rough sets is
that we have proper mathematical tools to calculate the neighborhood size in
order to get better results. We are now able to use statistical methods to obtain
a proper bandwidth which plays the role of the neighborhood size.

In the following subsection, we will outline a procedure to select the band-
widths in theory, that is: we provide some insights on how the bandwidths can
be calculated independently from data, using only the chosen kernel and the
original PDF.

4.3 Bandwidth Selection - An Example

This subsection relies on the work presented in [19]. Using the KDE theory, we
are able to construct the proper bandwidths for different kernels in order to
obtain the best possible estimator of PDFs (or at least close to the best). The
bandwidths are chosen to minimize the error of the PDF estimation. A widely
used error function is Mean Integrated Square Error (MISE):

MISE(f̂k,h) =
∫

XQ

E((f̂k,h(x) − f(x))2)dx

where E stands for the expected value. When n is significantly larger than the
number of attributes m, the MISE of radial kernels can be approximated as:

MISE(f̂k,h) ≈ C1h
4 +

C2

nhm
.

The latter expression is also called AMISE or Asymptotic MISE. By minimizing
the expression above, we get the optimal bandwidth:

hopt = C3n
− 1

m+4 .

Constants C1, C2 and C3 are dependent on the kernel and on the actual proba-
bility density function f . Assuming that our data are normally distributed (or
something close to normal with bounded support), we are able to calculate the
optimal bandwidths. Under normality assumption, the optimal bandwidths for
the Epanechikov and spherical uniform kernels are:

hopt
e = [8(d + 4)c−1

m (2
√

π)dn−1]
1

m+4 , hopt
u = [4(d + 2)c−1

m (2
√

π)dn−1]
1

m+4 .

From the AMISE expression, we may see that the rate of convergence is not
dependent on constant C3. Therefore, in order to avoid the assumptions and to
achieve better results one can try to tune constant C3 using data. Under hopt

for some kernel we also ensure that:

lim
n→∞ MISE(f̂k,hopt

) = 0.

That ensures that for a sufficiently large sample size n, the inconclusive areas
will become negligible. That is also intuitive since with more data we acquire
more knowledge which leaves less space for uncertainty.
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5 Discussion

We have presented a new way to calculate the neighborhood size in neighbor-
hood based rough sets. A question arises: does it provide satisfactory results in
practice?

It is well known that rough sets are widely used in attribute selection [4,10].
The attribute selection in rough sets focuses on preservation of certain knowl-
edge; we delete attributes as long as the lower approximations of all classes
remain unchanged.

We have run a series of experiments applying the attribute selection
using neighborhood based rough sets together with the calculated bandwidths.
Unfortunately, the results were not satisfactory. First, we simulated data
with normal distribution to fulfill the assumption from the previous subsec-
tion. We have noticed that for lower dimensions, both hopt

e -neighborhood and
hopt

u -neighborhood are too wide, meaning that they cover a large amount of data.
Consequently, the lower approximations obtained with them consist of a low per-
centage of data which is unrealistic. With higher dimensions, we observed the
opposite problem; the neighborhoods are too narrow which leads to the lower
approximation containing almost all data, which is also unrealistic. We can con-
clude that the naive approach of estimating PDF and searching for the optimal
bandwidth is not the best idea. The reason for the failure, even under the nor-
mality assumption, may lie in the fact that the optimal bandwidths are mainly
useful in the following cases.

– The number of objects in the sample is significantly larger than the number
of attributes since the bandwidth optimality is asymptotic.

– The MISE error is calculated using l2 norm (the integral of the squared dif-
ference). Our interest is to get the optimal bandwidth for the level set where
PDF is equal to 0. The l2 convergence does not guarantee that the estimator
also uniformly converges to the actual PDF [17]. Thus, we may have that
hopt is suitable for the higher density regions where the PDF is significantly
larger than 0 and that it may have poor performance for the regions where
the PDF is close to 0.

We have also applied the procedure on real data for which the normality assump-
tion does not hold. As soon as the assumption is not fulfilled, the results are get-
ting worse. For example, we considered binary classification in mammographic
data from UCI [1] for which n = 830 and m = 5. In all cases, the lower approxi-
mations contained less than 7 % of data, meaning that only 7 % of data can be
certainly classified. Keeping in mind that the classification accuracy we obtained
with SVM on this dataset is around 85%, 7 % of certainty is unrealistic.

To overcome the limitations of the theoretical bandwidth selection, we iden-
tify the following options for future integration of rough sets, KDE and statistics
in general.

– Data driven estimation. The calculation of bandwidths may be data
driven. There is also a statistical theory on how to calculate bandwidths
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based on data (again [19]). Data driven bandwidths will help us to overcome
any a priori assumptions on the distribution of data.

– Robust approaches. Having 0 probability regions is a strong assumption
which usually does not coincide with reality. Mostly, numerical data exhibit
rare events, which may occur in the training data and/or during the prediction
process. Having the assumption that data lie in a bounded region may be
misleading in many cases and it can produce bad results. The 0 probability
regions can be eliminated by applying robust approaches similar to Variable
Precision Rough Sets (VPRS).

– Direct level set estimation. The bandwidth calculation needs to be more
adjusted to the problem of the level set estimation, rather than to the PDF
estimation. After we identify the regions of interest, we have to set up the
optimization problem to get the best possible (or close to the best) bandwidth
for that particular case.

– Different estimators than KDE. We can try to use other estimators for
level sets, besides KDE. The nearest neighbor based estimator can give inter-
esting results [14].

– Integration with SVM. Do we have to use densities to estimate the approx-
imations defined in (1)? We showed that the estimation of the RV approxi-
mations (1) boils down to the estimation of level sets. We may explore the
relation between SVM and level set estimation as has been done in [11,16,22].
On the other hand, there is a direct correspondence between principles of
rough sets and SVM. The applications of rough sets in binary classification
divide the domain into three sets, two certain regions for each class and one
boundary region. SVM is doing something similar where it trains two margins
which divide the space similarly as the rough sets: one boundary region and
two regions for two classes. Thus, using the similarities between rough sets
and SVM, we can try to integrate them in order to achieve better results.

6 Conclusion

We presented a new view on the definition of rough sets for the case when data
are not necessarily categorical. From the statistical point of view, the calculation
of rough set approximations is basically the estimation of the unknown RV (ran-
dom value) approximations dependent on random variables that generate data.
Such estimation under certain conditions (i.e., using radial kernels with bounded
support) is equivalent to the definition of neighborhood based rough sets. We
also showed a simple way how to calculate the neighborhood size using statistics.
Moreover, we discussed several options for future research on the integration of
rough sets and statistics. Of course, for each of the proposals it should be studied
if it can be tailored to the main applications of rough sets: rule induction and
attribute selection.
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