Abstract
Quantitative imaging biomarkers derived from magnetic resonance imaging of the pancreas could reveal changes in pancreas organ volume and shape manifest in chronic disease. Recent developments in machine learning facilitate pancreas segmentation and volume extraction. Machine learning methods could also help in designing a data-driven approach to pancreas shape characterization. We present an automated pipeline for pancreas volume and shape characterization. We start off with deep learning-based segmentation; we show the impact of choice of loss function in pancreas segmentation by comparing a 3D U-Net model trained using soft Dice over cross-entropy loss. Then, a diffeomorphic algorithm for group-wise registration as well as manifold learning are used to extract prominent shape features from the segmentation masks. The technique shows potential in a subset (N = 3,909) of the UK Biobank imaging sub-study for (1) automated quality control, e.g. suboptimal pancreas coverage acquisitions; and (2) determining abnormal pancreas morphology, that might reflect different patterns of fat infiltration. To our knowledge, this work is the first to attempt learning pancreas shape features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
SPM12 revision 7771, https://www.fil.ion.ucl.ac.uk/spm/, under MATLAB R2019b.
- 2.
scikit-learn version 0.22.1, https://scikit-learn.org/stable/.
References
Asaturyan, H., Thomas, E.L., Fitzpatrick, J., Bell, J.D., Villarini, B.: Advancing pancreas segmentation in multi-protocol mri volumes using hausdorff-sine loss function. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 27–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_4
Ashburner, J., Friston, K.J.: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55(3), 954–967 (2011). https://doi.org/10.1016/j.neuroimage.2010.12.049
Ashburner, J., Klöppel, S.: Multivariate models of inter-subject anatomical variability. NeuroImage 56(2), 422–439 (2011). https://doi.org/10.1016/j.neuroimage.2010.03.059
Cai, J., Lu, L., Xing, F., Yang, L.: Pancreas segmentation in CT and MRI via task-specific network design and recurrent neural contextual learning. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds.) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. ACVPR, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13969-8_1
Dholakia, S., Sharples, E.J., Ploeg, R.J., Friend, P.J.: Significance of steatosis in pancreatic transplantation. Transplant. Rev. 31(4), 225–231 (2017). https://doi.org/10.1016/j.trre.2017.08.001
Gaser, C., Nenadic, I., Buchsbaum, B.R., Hazlett, E.A., Buchsbaum, M.S.: Deformation-based morphometry and its relation to conventional volumetry of brain lateral ventricles in MRI. NeuroImage (2001). https://doi.org/10.1006/nimg.2001.0771
Irving, B., et al.: Deep quantitative liver segmentation and vessel exclusion to assist in liver assessment. Commun. Comput. Inf. Sci. 723, 663–673 (2017). https://doi.org/10.1007/978-3-319-60964-5_58
Isensee, F., Jäger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: Automated design of deep learning methods for biomedical image segmentation 1, 1–8 (2019). http://arxiv.org/abs/1904.08128
Kim, J., et al.: Structural consequences of diffuse traumatic brain injury: alarge deformation tensor-based morphometry study. NeuroImage (2008). https://doi.org/10.1016/j.neuroimage.2007.10.005
Macauley, M., Percival, K., Thelwall, P.E., Hollingsworth, K.G., Taylor, R.: Altered volume, morphology and composition of the pancreas in type 2 diabetes. PLoS ONE 10(5), 1–14 (2015). https://doi.org/10.1371/journal.pone.0126825
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79
Mojtahed, A., et al.: Reference range of liver corrected T1 values in a population at low risk for fatty liver disease—a UK Biobank sub-study, with an appendix of interesting cases. Abdom. Radiol. 44(1), 72–84 (2018). https://doi.org/10.1007/s00261-018-1701-2
Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas (Midl), 1–10 (2018). http://arxiv.org/abs/1804.03999
Owler, J., Irving, B., Ridgeway, G., Wojciechowska, M., McGonigle, J., Brady, S.M.: Comparison of multi-atlas segmentation and U-Net approaches for automated 3D liver delineation in MRI. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 478–488. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_41
Reeder, S.B., Hu, H.H., Sirlin, C.B.: Proton density fat-fraction: a standardized mr-based biomarker of tissue fat concentration. J. Magn. Reson. Imag. JMRI 36(5), 1011 (2012). https://doi.org/10.1002/jmri.23741
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28. http://arxiv.org/abs/1505.04597
Saisho, Y., et al.: Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin. Anat. 20(8), 933–942 (2007). https://doi.org/10.1002/ca.20543
Saisho, Y.: Pancreas volume and fat deposition in diabetes and normal physiology: consideration of the interplay between endocrine and exocrine pancreas. Rev. Diabet. Stud. 13(2–3), 132–147 (2016). https://doi.org/10.1900/RDS.2016.13.132
Sudlow, C., et al.: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12(3), e1001779 (2015). https://doi.org/10.1371/journal.pmed.1001779
Tariq, H., Nayudu, S., Akella, S., Glandt, M., Chilimuri, S.: Non-alcoholic fatty pancreatic disease: a review of literature. Gastroenterol. Res. 9(6), 87–91 (2016). https://doi.org/10.14740/gr731w
Tarroni, G., et al.: Large-scale quality control of cardiac imaging in population studies: application to UK biobank. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-020-58212-2
Villarini, B., Asaturyan, H., Thomas, E.L., Mould, R., Bell, J.D.: A framework for morphological feature extraction of organs from MR images for detection and classification of abnormalities. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 666–671. IEEE (2017). https://doi.org/10.1109/CBMS.2017.49, http://ieeexplore.ieee.org/document/8104275/
Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.015
Acknowledgements
We would like to thank Dr Benjamin Irving and James Owler for the development of the deep learning segmentation framework and Dr Rachel Phillips for advice with manual pancreas annotations in radiology images.
We would also like to acknowledge EPSRC and Perspectum Ltd. for funding and support.
This research has been conducted using the UK Biobank Resource under application 9914.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bagur, A.T., Ridgway, G., McGonigle, J., Brady, S.M., Bulte, D. (2020). Pancreas Segmentation-Derived Biomarkers: Volume and Shape Metrics in the UK Biobank Imaging Study. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-52791-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-52790-7
Online ISBN: 978-3-030-52791-4
eBook Packages: Computer ScienceComputer Science (R0)