Skip to main content

Pancreas Segmentation-Derived Biomarkers: Volume and Shape Metrics in the UK Biobank Imaging Study

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2020)

Abstract

Quantitative imaging biomarkers derived from magnetic resonance imaging of the pancreas could reveal changes in pancreas organ volume and shape manifest in chronic disease. Recent developments in machine learning facilitate pancreas segmentation and volume extraction. Machine learning methods could also help in designing a data-driven approach to pancreas shape characterization. We present an automated pipeline for pancreas volume and shape characterization. We start off with deep learning-based segmentation; we show the impact of choice of loss function in pancreas segmentation by comparing a 3D U-Net model trained using soft Dice over cross-entropy loss. Then, a diffeomorphic algorithm for group-wise registration as well as manifold learning are used to extract prominent shape features from the segmentation masks. The technique shows potential in a subset (N = 3,909) of the UK Biobank imaging sub-study for (1) automated quality control, e.g. suboptimal pancreas coverage acquisitions; and (2) determining abnormal pancreas morphology, that might reflect different patterns of fat infiltration. To our knowledge, this work is the first to attempt learning pancreas shape features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    SPM12 revision 7771, https://www.fil.ion.ucl.ac.uk/spm/, under MATLAB R2019b.

  2. 2.

    scikit-learn version 0.22.1, https://scikit-learn.org/stable/.

References

  1. Asaturyan, H., Thomas, E.L., Fitzpatrick, J., Bell, J.D., Villarini, B.: Advancing pancreas segmentation in multi-protocol mri volumes using hausdorff-sine loss function. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 27–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_4

    Chapter  Google Scholar 

  2. Ashburner, J., Friston, K.J.: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55(3), 954–967 (2011). https://doi.org/10.1016/j.neuroimage.2010.12.049

    Article  Google Scholar 

  3. Ashburner, J., Klöppel, S.: Multivariate models of inter-subject anatomical variability. NeuroImage 56(2), 422–439 (2011). https://doi.org/10.1016/j.neuroimage.2010.03.059

    Article  Google Scholar 

  4. Cai, J., Lu, L., Xing, F., Yang, L.: Pancreas segmentation in CT and MRI via task-specific network design and recurrent neural contextual learning. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds.) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. ACVPR, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13969-8_1

    Chapter  Google Scholar 

  5. Dholakia, S., Sharples, E.J., Ploeg, R.J., Friend, P.J.: Significance of steatosis in pancreatic transplantation. Transplant. Rev. 31(4), 225–231 (2017). https://doi.org/10.1016/j.trre.2017.08.001

    Article  Google Scholar 

  6. Gaser, C., Nenadic, I., Buchsbaum, B.R., Hazlett, E.A., Buchsbaum, M.S.: Deformation-based morphometry and its relation to conventional volumetry of brain lateral ventricles in MRI. NeuroImage (2001). https://doi.org/10.1006/nimg.2001.0771

    Article  Google Scholar 

  7. Irving, B., et al.: Deep quantitative liver segmentation and vessel exclusion to assist in liver assessment. Commun. Comput. Inf. Sci. 723, 663–673 (2017). https://doi.org/10.1007/978-3-319-60964-5_58

    Article  Google Scholar 

  8. Isensee, F., Jäger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: Automated design of deep learning methods for biomedical image segmentation 1, 1–8 (2019). http://arxiv.org/abs/1904.08128

  9. Kim, J., et al.: Structural consequences of diffuse traumatic brain injury: alarge deformation tensor-based morphometry study. NeuroImage (2008). https://doi.org/10.1016/j.neuroimage.2007.10.005

    Article  Google Scholar 

  10. Macauley, M., Percival, K., Thelwall, P.E., Hollingsworth, K.G., Taylor, R.: Altered volume, morphology and composition of the pancreas in type 2 diabetes. PLoS ONE 10(5), 1–14 (2015). https://doi.org/10.1371/journal.pone.0126825

    Article  Google Scholar 

  11. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79

  12. Mojtahed, A., et al.: Reference range of liver corrected T1 values in a population at low risk for fatty liver disease—a UK Biobank sub-study, with an appendix of interesting cases. Abdom. Radiol. 44(1), 72–84 (2018). https://doi.org/10.1007/s00261-018-1701-2

    Article  Google Scholar 

  13. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas (Midl), 1–10 (2018). http://arxiv.org/abs/1804.03999

  14. Owler, J., Irving, B., Ridgeway, G., Wojciechowska, M., McGonigle, J., Brady, S.M.: Comparison of multi-atlas segmentation and U-Net approaches for automated 3D liver delineation in MRI. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 478–488. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_41

    Chapter  Google Scholar 

  15. Reeder, S.B., Hu, H.H., Sirlin, C.B.: Proton density fat-fraction: a standardized mr-based biomarker of tissue fat concentration. J. Magn. Reson. Imag. JMRI 36(5), 1011 (2012). https://doi.org/10.1002/jmri.23741

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28. http://arxiv.org/abs/1505.04597

  17. Saisho, Y., et al.: Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin. Anat. 20(8), 933–942 (2007). https://doi.org/10.1002/ca.20543

    Article  Google Scholar 

  18. Saisho, Y.: Pancreas volume and fat deposition in diabetes and normal physiology: consideration of the interplay between endocrine and exocrine pancreas. Rev. Diabet. Stud. 13(2–3), 132–147 (2016). https://doi.org/10.1900/RDS.2016.13.132

    Article  Google Scholar 

  19. Sudlow, C., et al.: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12(3), e1001779 (2015). https://doi.org/10.1371/journal.pmed.1001779

    Article  Google Scholar 

  20. Tariq, H., Nayudu, S., Akella, S., Glandt, M., Chilimuri, S.: Non-alcoholic fatty pancreatic disease: a review of literature. Gastroenterol. Res. 9(6), 87–91 (2016). https://doi.org/10.14740/gr731w

    Article  Google Scholar 

  21. Tarroni, G., et al.: Large-scale quality control of cardiac imaging in population studies: application to UK biobank. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-020-58212-2

    Article  Google Scholar 

  22. Villarini, B., Asaturyan, H., Thomas, E.L., Mould, R., Bell, J.D.: A framework for morphological feature extraction of organs from MR images for detection and classification of abnormalities. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 666–671. IEEE (2017). https://doi.org/10.1109/CBMS.2017.49, http://ieeexplore.ieee.org/document/8104275/

  23. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Benjamin Irving and James Owler for the development of the deep learning segmentation framework and Dr Rachel Phillips for advice with manual pancreas annotations in radiology images.

We would also like to acknowledge EPSRC and Perspectum Ltd. for funding and support.

This research has been conducted using the UK Biobank Resource under application 9914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Triay Bagur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagur, A.T., Ridgway, G., McGonigle, J., Brady, S.M., Bulte, D. (2020). Pancreas Segmentation-Derived Biomarkers: Volume and Shape Metrics in the UK Biobank Imaging Study. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics