Skip to main content

Segmentation of the Biliary Tree from MRCP Images via the Monogenic Signal

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1248))

Included in the following conference series:

Abstract

Magnetic resonance cholangiopancreatography (MRCP), an MRI-based technique for imaging the bile and pancreatic ducts, plays a vital role in the investigation of pancreatobiliary diseases. In current clinical practice, MRCP image interpretation remains primarily qualitative, though there is growing interest in using quantitative biomarkers, computed from segmentations of the biliary tree, to provide more objective assessments. The variable image quality and duct contrasts in MRCP images, as well as the presence of bifurcations, tortuous bile ducts and bright gastrointestinal structures, makes segmenting the biliary tree from MRCP images a challenging task. We propose a method, based on the monogenic signal, for detecting the biliary tree in MRCP images. Using both phantom and clinical data we show that by tuning the monogenic signal to detect symmetric features we can successfully detect bile ducts and obtain accurate duct diameter measurements. Compared to the Hessian-based Frangi vesselness filter, we show that our method gives superior background noise suppression and performs better at duct bifurcations, where the model assumptions underlying vesselness fail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffin, N., Charles-Edwards, G., Grant, L.A.: Magnetic resonance cholangiopancreatography: the ABC of MRCP. Insights into imaging 3(1), 11–21 (2012)

    Article  Google Scholar 

  2. Ruiz, A., Lemoinne, S., Carrat, F., Corpechot, C., Chazouillères, O., Arrivé, L.: Radiologic course of primary sclerosing cholangitis: assessment by three-dimensional magnetic resonance cholangiography and predictive features of progression. Hepatology 59(1), 242–250 (2014)

    Article  Google Scholar 

  3. Gilligan, L.A., et al.: Differentiating pediatric autoimmune liver diseases by quantitative magnetic resonance cholangiopancreatography. Abdom. Radiol. 45(1), 168–176 (2019). https://doi.org/10.1007/s00261-019-02184-z

    Article  Google Scholar 

  4. Robinson, K., Whelan, P.F.: Analysis of the pancreato-biliary system from MRCP. In: 18th IEEE Symposium on Computer-Based Medical Systems (CBMS 2005), pp. 253–258 (2005)

    Google Scholar 

  5. Fraz, M.M., et al.: Blood vessel segmentation methodologies in retinal images–a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  6. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  7. Goldfinger, M.H., Ridgway, G.R., Ferreira, C., et al.: Quantitative MRCP imaging: accuracy, repeatability, reproducibility, and cohort-derived normative ranges. J. Magn. Reson. Imag. JMRI (2020). Accessed 08 Mar 2020. https://doi.org/10.1002/jmri.27113

  8. Vikal, S., Brady, J.M.: Method and apparatus for generating quantitative data from biliary tree structures, GB Patent GB2549459A. Accessed 25 Oct 2017

    Google Scholar 

  9. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  10. Läthén, G., Jonasson, J., Borga, M.: Blood vessel segmentation using multi-scale quadrature filtering. Pattern Recogn. Lett. 31(8), 762–767 (2010)

    Article  Google Scholar 

  11. Zhao, Y., et al.: Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Trans. Med. Imag. 37(2), 438–450 (2017)

    Article  Google Scholar 

  12. Moccia, S., De Momi, E., El Hadji, S., Mattos, L.S.: Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 158, 71–91 (2018)

    Article  Google Scholar 

  13. Mellor, M., Brady, M.: Phase mutual information as a similarity measure for registration. Med. Image Anal. 9(4), 330–343 (2005)

    Article  Google Scholar 

  14. Kovesi, P.: Symmetry and asymmetry from local phase. In: Tenth Australian Joint Conference on Artificial Intelligence, pp. 2–4 (1997)

    Google Scholar 

  15. Kovesi, P.: Image features from phase congruency. Videre J. Comput. Vis. Res. 1(3), 1–26 (1999)

    Google Scholar 

  16. Rajpoot, K., Grau, V., Noble, J.A.: Local-phase based 3D boundary detection using monogenic signal and its application to real-time 3-D echocardiography images. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 783–786. IEEE (2009)

    Google Scholar 

  17. Dobrovolskij, D., Persch, J., Schladitz, K., Steidl, G.: Structure detection with second order Riesz transforms. Image Anal. Stereol. 38(1), 107–119 (2019)

    Article  MathSciNet  Google Scholar 

  18. Håkansson, K., Christoffersson, J.O., Leander, P., Ekberg, O., Håkansson, H.O.: On the appearance of bile in clinical MR cholangiopancreatography. Acta Radiol. 43(4), 401–410 (2002)

    Article  Google Scholar 

  19. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Ralli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ralli, G.P., Ridgway, G.R., Brady, S.M. (2020). Segmentation of the Biliary Tree from MRCP Images via the Monogenic Signal. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics