Skip to main content

Customer Interaction Networks Based on Multiple Instance Similarities

  • Conference paper
  • First Online:
Business Information Systems (BIS 2020)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 389))

Included in the following conference series:

Abstract

Understanding customer behaviors is deemed crucial to improve customers’ satisfaction and loyalty, which eventually is materialized in increased revenue. This paper tackles this challenge by using complex networks and multiple instance reasoning to examine the network structure of Customer Purchasing Behaviors. Our main contributions rely on a new multiple instance similarity to measure the interaction among customers based on the mutual information theory focuses on the customers’ bags, a new network construction approach involving customers, orders and products, and a new measure for evaluating its internal consistency. The simulations using 12 real-world problems support the effectiveness of our proposal.

The authors would like to thanks the anonymous commercial partners for providing the data sources and other resources used in this research. We are also grateful to Hasselt University for supporting this research with the special fund for incoming mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  2. Chen, Y.L., Tang, K., Shen, R.J., Hu, Y.H.: Market basket analysis in a multiple store environment. Decis. Support Syst. 40(2), 339–354 (2005)

    Article  Google Scholar 

  3. Cheplygina, V., Tax, D.M., Loog, M.: Multiple instance learning with bag dissimilarities. Pattern Recogn. 48(1), 264–275 (2015)

    Article  Google Scholar 

  4. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  5. De Domenico, M.: Mathematical formulation of multilayer networks. Phys. Rev. X 3(4), 041022 (2013)

    Google Scholar 

  6. Fuentes, I., Nápoles, G., Arco, L., Vanhoof, K.: Customer segmentation using multiple instance clustering and purchasing behaviors. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds.) IWAIPR 2018. LNCS, vol. 11047, pp. 193–200. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01132-1_22

    Chapter  Google Scholar 

  7. Herrera, F., et al.: Multiple instance learning. Multiple Instance Learning, pp. 17–33. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47759-6_2

    Chapter  Google Scholar 

  8. Kaminskas, M., Bridge, D., Foping, F., Roche, D.: Product-seeded and basket-seeded recommendations for small-scale retailers. J. Data Semant. 6(1), 3–14 (2017)

    Article  Google Scholar 

  9. Kim, H.K., Kim, J.K., Chen, Q.Y.: A product network analysis for extending the market basket analysis. Exp. Syst. Appl. 39(8), 7403–7410 (2012)

    Article  Google Scholar 

  10. Linden, G., Smith, B., York, J.: Amazon. com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

    Article  Google Scholar 

  11. Miguéis, V.L., Camanho, A.S., Cunha, J.F.: Customer data mining for lifestyle segmentation. Exp. Syst. Appl. 39(10), 9359–9366 (2012)

    Article  Google Scholar 

  12. Monteserin, A., Armentano, M.G.: Influence-based approach to market basket analysis. Inf. Syst. 78, 214–224 (2018)

    Article  Google Scholar 

  13. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)

    Article  MathSciNet  Google Scholar 

  14. Raeder, T., Chawla, N.V.: Modeling a store’s product space as a social network. In: International Conference on Advances on Social Network Analysis and Mining, pp. 164–169. IEEE (2009)

    Google Scholar 

  15. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)

    Article  Google Scholar 

  16. Reutterer, T., Hornik, K., March, N., Gruber, K.: A data mining framework for targeted category promotions. J. Bus. Econ. 87(3), 337–358 (2016). https://doi.org/10.1007/s11573-016-0823-7

    Article  Google Scholar 

  17. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. Eur. Phys. J. Spec. Topics 178(1), 13–23 (2009)

    Article  Google Scholar 

  18. Shihab, S.H., Afroge, S., Mishu, S.Z.: RFM based market segmentation approach using advanced k-means and agglomerative clustering: a comparative study. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–4. IEEE (2019)

    Google Scholar 

  19. Theobald, M., Siddharth, J., Paepcke, A.: Spotsigs: robust and efficient near duplicate detection in large web collections. In: 31st International Conference on Research and Development in Information Retrieval, pp. 563–570. ACM (2008)

    Google Scholar 

  20. Valero-Fernandez, R., Collins, D.J., Lam, K.P., Rigby, C., Bailey, J.: Towards accurate predictions of customer purchasing patterns. In: International Conference on Computer and Information Technology (CIT), August 2017, pp. 157–161. IEEE (2017)

    Google Scholar 

  21. Vörös, A., Snijders, T.A.: Cluster analysis of multiplex networks: defining composite network measures. Soc. Netw. 49, 93–112 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivett Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuentes, I., Nápoles, G., Arco, L., Vanhoof, K. (2020). Customer Interaction Networks Based on Multiple Instance Similarities. In: Abramowicz, W., Klein, G. (eds) Business Information Systems. BIS 2020. Lecture Notes in Business Information Processing, vol 389. Springer, Cham. https://doi.org/10.1007/978-3-030-53337-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53337-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53336-6

  • Online ISBN: 978-3-030-53337-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics