Skip to main content

Efficient Construction of Behavior Graphs for Uncertain Event Data

  • Conference paper
  • First Online:
Business Information Systems (BIS 2020)

Abstract

The discipline of process mining deals with analyzing execution data of operational processes, extracting models from event data, checking the conformance between event data and normative models, and enhancing all aspects of processes. Recently, new techniques have been developed to analyze event data containing uncertainty; these techniques strongly rely on representing uncertain event data through graph-based models capturing uncertainty. In this paper we present a novel approach to efficiently compute a graph representation of the behavior contained in an uncertain process trace. We present our new algorithm, analyze its time complexity, and report experimental results showing order-of-magnitude performance improvements for behavior graph construction.

We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/proved-py/proved-core/tree/Efficient_Construction_of_Behavior_Graphs_for_Uncertain_Event_Data.

References

  1. Van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Cham (2016)

    Book  Google Scholar 

  2. Aho, A., et al.: Compilers: Principles, Techniques and Tools (2007)

    Google Scholar 

  3. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972)

    Article  MathSciNet  Google Scholar 

  4. Al-Mutawa, H.A., Dietrich, J., Marsland, S., McCartin, C.: On the shape of circular dependencies in Java programs. In: 2014 23rd Australian Software Engineering Conference, pp. 48–57. IEEE (2014)

    Google Scholar 

  5. Bayes, T.: LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philos. Trans. R. Soc. Lond. (53), 370–418 (1763)

    Google Scholar 

  6. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process Mining for Python (PM4Py): bridging the gap between process- and data science. In: ICPM Demo Track (CEUR 2374), pp. 13–16 (2019)

    Google Scholar 

  7. D’Alberto, P., Nicolau, A.: Using recursion to boost ATLAS’s performance. In: Labarta, J., Joe, K., Sato, T. (eds.) ALPS/ISHPC 2005-2006. LNCS, vol. 4759, pp. 142–151. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77704-5_12

    Chapter  Google Scholar 

  8. Dutta, S.: An event based fuzzy temporal logic. In: 1988 Proceedings of the Eighteenth International Symposium on Multiple-Valued Logic, pp. 64–71. IEEE (1988)

    Google Scholar 

  9. Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 514–523. IEEE (2012)

    Google Scholar 

  10. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 296–303. ACM (2014)

    Google Scholar 

  11. Mariappan, M., Vora, K.: GraphBolt: dependency-driven synchronous processing of streaming graphs. In: Proceedings of the Fourteenth EuroSys Conference 2019, p. 25. ACM (2019)

    Google Scholar 

  12. Pegoraro, M., van der Aalst, W.M.P.: Mining uncertain event data in process mining. In: 2019 International Conference on Process Mining (ICPM), pp. 89–96. IEEE (2019)

    Google Scholar 

  13. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Discovering process models from uncertain event data. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 238–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_20

    Chapter  Google Scholar 

  14. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pegoraro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P. (2020). Efficient Construction of Behavior Graphs for Uncertain Event Data. In: Abramowicz, W., Klein, G. (eds) Business Information Systems. BIS 2020. Lecture Notes in Business Information Processing, vol 389. Springer, Cham. https://doi.org/10.1007/978-3-030-53337-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53337-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53336-6

  • Online ISBN: 978-3-030-53337-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics