Abstract
The discipline of process mining deals with analyzing execution data of operational processes, extracting models from event data, checking the conformance between event data and normative models, and enhancing all aspects of processes. Recently, new techniques have been developed to analyze event data containing uncertainty; these techniques strongly rely on representing uncertain event data through graph-based models capturing uncertainty. In this paper we present a novel approach to efficiently compute a graph representation of the behavior contained in an uncertain process trace. We present our new algorithm, analyze its time complexity, and report experimental results showing order-of-magnitude performance improvements for behavior graph construction.
We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Cham (2016)
Aho, A., et al.: Compilers: Principles, Techniques and Tools (2007)
Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972)
Al-Mutawa, H.A., Dietrich, J., Marsland, S., McCartin, C.: On the shape of circular dependencies in Java programs. In: 2014 23rd Australian Software Engineering Conference, pp. 48–57. IEEE (2014)
Bayes, T.: LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philos. Trans. R. Soc. Lond. (53), 370–418 (1763)
Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process Mining for Python (PM4Py): bridging the gap between process- and data science. In: ICPM Demo Track (CEUR 2374), pp. 13–16 (2019)
D’Alberto, P., Nicolau, A.: Using recursion to boost ATLAS’s performance. In: Labarta, J., Joe, K., Sato, T. (eds.) ALPS/ISHPC 2005-2006. LNCS, vol. 4759, pp. 142–151. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77704-5_12
Dutta, S.: An event based fuzzy temporal logic. In: 1988 Proceedings of the Eighteenth International Symposium on Multiple-Valued Logic, pp. 64–71. IEEE (1988)
Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 514–523. IEEE (2012)
Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 296–303. ACM (2014)
Mariappan, M., Vora, K.: GraphBolt: dependency-driven synchronous processing of streaming graphs. In: Proceedings of the Fourteenth EuroSys Conference 2019, p. 25. ACM (2019)
Pegoraro, M., van der Aalst, W.M.P.: Mining uncertain event data in process mining. In: 2019 International Conference on Process Mining (ICPM), pp. 89–96. IEEE (2019)
Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Discovering process models from uncertain event data. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 238–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_20
Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P. (2020). Efficient Construction of Behavior Graphs for Uncertain Event Data. In: Abramowicz, W., Klein, G. (eds) Business Information Systems. BIS 2020. Lecture Notes in Business Information Processing, vol 389. Springer, Cham. https://doi.org/10.1007/978-3-030-53337-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-53337-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-53336-6
Online ISBN: 978-3-030-53337-3
eBook Packages: Computer ScienceComputer Science (R0)