Abstract
Nowadays, chatbots have become more and more prominent in various domains. Nevertheless, designing a versatile chatbot, giving reasonable answers, is a challenging task. Thereby, the major drawback of most chatbots is their limited scope. Multi-agent-based systems offer approaches to solve problems in a cooperative manner following the “divide and conquer” paradigm. Consequently, it seems promising to design a multi-agent-based chatbot approach scaling beyond the scope of a single application context. To address this research gap, we propose a novel approach orchestrating well-established conversational assistants. We demonstrate and evaluate our approach using six chatbots, providing higher quality than competing artifacts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, N.A., Che, M.H., Zainal, A., et al.: Review of chatbots design techniques. IJACSA 181(8), 7–10 (2018)
Klopfenstein, L.C., Delpriori, S., Malatini, S., et al.: The rise of bots: a survey of conversational interfaces, patterns, and paradigms. In: Proceedings of the 12th Conference on Designing Interactive Systems, pp. 555–565 (2017)
Chaves, A.P., Gerosa, M.A.: Single or multiple conversational agents? An interactional coherence comparison. In: Proceedings of the 36th CHI (2018)
Masche, J., Le, N.-T.: A review of technologies for conversational systems. In: Proceedings of the 5th ICCSAMA, pp. 212–225 (2017)
Dhanda, S.: How chatbots will transform the retail industry. Juniper Research (2018)
Abdul-Kader, S.A., Woods, J.C.: Survey on chatbot design techniques in speech conversation systems. IJACSA 6(7), 72–80 (2015)
Chen, H., Liu, X., Yin, D., et al.: A survey on dialogue systems: recent advances and new frontiers. ACM SIGKDD Explor. Newslett. 19(2), 25–35 (2017)
Ramesh, K., Ravishankaran, S., Joshi, A., Chandrasekaran, K.: A survey of design techniques for conversational agents. In: Kaushik, S., Gupta, D., Kharb, L., Chahal, D. (eds.) ICICCT 2017. CCIS, vol. 750, pp. 336–350. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6544-6_31
Wallace, R.S.: The anatomy of ALICE. In: Epstein, R., Roberts, G., Beber, G. (eds.) Parsing the Turing Test, pp. 181–210. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-6710-5_13
Serban, I.V., Sankar, C., Germain, M., et al.: A deep reinforcement learning chatbot (2017)
Pichl, J., Marek, P., Konrád, J., et al.: Alquist: the Alexa prize socialbot. In: Proceedings of the 1st Alexa Prize (2017)
Huang, T.-H.K., Chang, J.C., Bigham, J.P.: Evorus: a crowd-powered conversational assistant built to automate itself over time. In: Proceedings of the 36th CHI (2018)
Papaioannou, I., Curry, A.C., Part, J.L., et al.: Alana: social dialogue using an ensemble model and a ranker trained on user feedback. In: Proceedings of the 1st Alexa Prize (2017)
Pinhanez, C.S., Candello, H., Pichiliani, M.C., et al.: Different but equal: comparing user collaboration with digital personal assistants vs. teams of expert agents (2018)
Janarthanam, S.: Hands-On Chatbots and Conversational UI Development. Packt Publishing, Birmingham (2017)
Chandar, P., et al.: Leveraging conversational systems to assists new hires during onboarding. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishan, D., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10514, pp. 381–391. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67684-5_23
Jennings, N.R.: Commitments and conventions: the foundation of coordination in multi-agent systems. Knowl. Eng. Rev. 8(3), 223–250 (1993)
Jennings, N.R.: An agent-based approach for building complex software systems. Commun. ACM 44(4), 35–41 (2001)
Klusch, M., Sycara, K.: Brokering and matchmaking for coordination of agent societies. a survey. In: Omicini, A., Zambonelli, F., Klusch, M. (eds.) Coordination of Internet Agents, pp. 197–224. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04401-8_8
Peffers, K., Tuunanen, T., Rothenberger, M.A., et al.: A design science research methodology for information systems research. JMIS 24(3), 45–77 (2007)
Maglio, P.P., Matlock, T., Campbell, C.S., Zhai, S., Smith, B.A.: Gaze and speech in attentive user interfaces. In: Tan, T., Shi, Y., Gao, W. (eds.) ICMI 2000. LNCS, vol. 1948, pp. 1–7. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40063-X_1
Cui, L., Huang, S., Wei, F., et al.: Superagent. A customer service chatbot for e-commerce websites. In: Proceedings of the 55th Annual Meeting of the ACL, pp. 97–102 (2017)
Arentze, T., Timmermans, H.: Modeling the formation of activity agendas using reactive agents. Environ. Plan. B 29(5), 719–728 (2002)
Ehlert, P., Rothkrantz, L.J.M.: Microscopic traffic simulation with reactive driving agents. In: 4th Proceedings of IEEE Intelligent Transportation Systems, pp. 861–866 (2001)
Rao, A.S., Georgeff, M.P.: BDI agents. In: 1st ICMAS, pp. 312–319 (1995)
Barua, A., Whinston, A.B., Yin, F.: Value and productivity in the internet economy. Computer 33(5), 102–105 (2000)
Decker, K., Sycara, K., Williamson, M.: Middle-agents for the internet. In: Proceedings of the 15th IJCAI, pp. 578–583 (1997)
Hettige, B., Karunananda, A.S.: Octopus: a multi agent chatbot. In: Proceedings of the 8th International Research Conference, pp. 41–47 (2015)
Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)
Baskerville, R., Baiyere, A., Gregor, S., et al.: Design science research contributions: finding a balance between artifact and theory. JAIS 19, 358–376 (2018)
Hevner, A.R., March, S.T., Park, J., et al.: Design science in information systems research. MIS Q. 28, 75–105 (2004)
Labrou, Y., Finin, T., Peng, Y.: Agent communication languages: the current landscape. Intell. Syst. Appl. 14(2), 45–52 (1999)
Park, S., An, D.U.: Automatic e-mail classification using dynamic category hierarchy and semantic features. IETE Tech. Rev. 27(6), 478–492 (2010)
Li, N., Wu, D.D.: Using text mining and sentiment analysis for online forums hotspot detection and forecast. DSS 48(2), 354–368 (2010)
Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328
Russell, S.J., Norvig, P.: AI. A Modern Approach. Pearson Education, London (2010)
Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439_114
Skorochod’ko, E.F.: Adaptive method of automatic abstracting and indexing. In: Proceedings of the 5th Information Processing Congress, pp. 1179–1182 (1972)
Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation. Mach. Learn. 34(1–3), 177–210 (1999). https://doi.org/10.1023/A:1007506220214
Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)
Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3–4), 189–208 (1971)
Dang, V., Croft, B.W.: Query reformulation using anchor text. In: Proceedings of the 3rd WSDM, pp. 41–50 (2010)
Mitsuku Dataset. https://github.com/pandorabots/Free-AIML. Accessed 06 Dec 2019
Rosie Dataset. https://github.com/pandorabots/rosie. Accessed 06 Dec 2019
Quora Dataset. https://www.kaggle.com/c/quora-question-pairs. Accessed 06 Dec 2019
Wikipedia Dataset. https://www.kaggle.com/rtatman/questionanswer-dataset. Accessed 06 Dec 2019
Ling, W., Yogatama, D., Dyer, C., et al.: Program induction by rationale generation: learning to solve and explain algebraic word problems. In: Proceedings of the 55th Annual Meeting of the ACL, pp. 158–167 (2017)
Bedué, P., Graef, R., Klier, M., et al.: A novel hybrid knowledge retrieval approach for online customer service platforms. In: Proceedings of the 26th ECIS (2018)
Aimpulse Spectrum. https://developer.aimpulse.com. Accessed 23 Aug 2019
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th IJCAI, vol. 14, no. 2, pp. 1137–1145 (1995)
Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016)
Stoeckli, E., Uebernickel, F., Brenner, W.: Exploring affordances of slack integrations and their actualization within enterprises-towards an understanding of how chatbots create value. In: Proceedings of the 51st HICSS (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zolitschka, J.F. (2020). A Novel Multi-agent-based Chatbot Approach to Orchestrate Conversational Assistants. In: Abramowicz, W., Klein, G. (eds) Business Information Systems. BIS 2020. Lecture Notes in Business Information Processing, vol 389. Springer, Cham. https://doi.org/10.1007/978-3-030-53337-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-53337-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-53336-6
Online ISBN: 978-3-030-53337-3
eBook Packages: Computer ScienceComputer Science (R0)