Skip to main content

RETRACTED CHAPTER: An Energy-Aware Dynamic Resource Management Technique Using Deep Q-Learning Algorithm and Joint VM and Container Consolidation Approach for Green Computing in Cloud Data Centers

  • Conference paper
Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference (DCAI 2020)

Abstract

These days by a high increase in the amount of computation and big data gathering and analysis, everybody needs more resources. Buying more computational and storage resources are so expensive. However, cloud computing solved this problem by providing a “pay as you go” plans therefor, users will only pay for resources that they used. However, using this technology has its challenges. One of them is resource management, which is focusing on the methodologies of dedicating resources to the users with the minimum of waste. In this paper, we propose a novel energy-aware resource management technique, using the concepts of both joint VM and container consolidation approach and deep Q-Learning algorithm for green computing in cloud data centers in order to minimize the waste of resources, migration rate, and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Piraghaj, S.F., et al.: ContainerCloudSim: an environment for modeling and simulation of containers in cloud data centers. Softw. Pract. Exp. 47(4), 505–521 (2017)

    Article  Google Scholar 

  2. Pahl, C.: Containerization and the paas cloud. IEEE Cloud Comput. 2(3), 24–31 (2015)

    Article  Google Scholar 

  3. Kaur, T., Chana, I.: Energy efficiency techniques in cloud computing: a survey and taxonomy. ACM Comput. Surv. (CSUR) 48(2), 22 (2015)

    Article  Google Scholar 

  4. Rugwiro, U., Gu, C., Ding, W.: Task scheduling and resource allocation based on ant-colony optimization and deep reinforcement learning. J. Internet Technol. 20(5), 1463–1475 (2019)

    Google Scholar 

  5. Rossi, F., Nardelli, M., Cardellini, V.: Horizontal and vertical scaling of container-based applications using reinforcement learning. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 329–338. IEEE, July 2019

    Google Scholar 

  6. Gazori, P., Rahbari, D., Nickray, M.: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach. Future Gen. Comput. Syst. 110, 1098–1115 (2020)

    Article  Google Scholar 

  7. Shoeibi, N., Shoeibi, N.: Future of smart parking: automated valet parking using deep Q-learning. In: International Symposium on Distributed Computing and Artificial Intelligence, pp. 177–182. Springer, Cham, June 2019

    Google Scholar 

  8. van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision processes. In: Reinforcement Learning, pp. 3–42. Springer (2012)

    Google Scholar 

  9. López, M., Pedraza, J., Carbó, J., Molina, J.M.: The awareness of privacy issues in ambient intelligence. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 3(2), 71–84 (2014). ISSN 2255-2863

    Article  Google Scholar 

  10. Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: 17th International Conference on Information Fusion (FUSION), pp. 1–8. IEEE, July 2014

    Google Scholar 

  11. Bullon, J., et al.: Manufacturing processes in the textile industry. Expert systems for fabrics production. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(4), 15–23 (2017)

    Article  Google Scholar 

  12. Fdez-Riverola, F., Iglesias, E.L., Díaz, F., Méndez, J.R., Corchado, J.M.: Applying lazy learning algorithms to tackle concept drift in spam filtering. Expert Syst. Appl. 33(1), 36–48 (2007)

    Article  Google Scholar 

  13. Souza de Castro, L.F., Vaz Alves, G., Pinz Borges, A.P.: Using trust degree for agents in order to assign spots in a Smart Parking. (2017)

    Google Scholar 

  14. Moung, E.: A comparison of the YCBCR color space with gray scale for face recognition for surveillance applications. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(4), 25–33 (2017)

    Article  Google Scholar 

  15. Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl.-Based Syst. 137, 54–64 (2017)

    Article  Google Scholar 

  16. Kethareswaran, V., Sankar Ram, C.: An Indian perspective on the adverse impact of Internet of Things (IoT). ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(4), 35–40 (2017)

    Article  Google Scholar 

  17. Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Sig. Process. 119, 115–127 (2016)

    Article  Google Scholar 

  18. Cunha, R., Billa, C., Adamatti, D.: Development of a graphical tool to integrate the prometheus AEOlus methodology and Jason platform. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(2), 57–70 (2017)

    Article  Google Scholar 

  19. Coria, J.A.G., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4), 1189–1205 (2014)

    Article  Google Scholar 

  20. Siyau, M.F., Li, T., Loo, J.: A novel pilot expansion approach for MIMO channel estimation. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 3(3), 12–20 (2014). ISSN 2255-2863

    Article  Google Scholar 

  21. Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for Ambient Intelligence systems. Inf. Sci. 222, 47–65 (2013)

    Article  Google Scholar 

  22. Corchado, J.M., Pavón, J., Corchado, E.S., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. In: European Conference on Case-Based Reasoning, pp. 547–559. Springer, Heidelberg, August 2004

    Google Scholar 

  23. Lima, A.C.E., de Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015)

    Google Scholar 

  24. Fdez-Riverola, F., Corchado, J.M.: FSfRT: forecasting system for red tides. Appl. Intell. 21(3), 251–264 (2004)

    Article  Google Scholar 

  25. Fdez-Riverola, F., Iglesias, E.L., Díaz, F., Méndez, J.R., Corchado, J.M.: SpamHunting: an instance-based reasoning system for spam labelling and filtering. Decis. Supp. Syst. 43(3), 722–736 (2007)

    Article  Google Scholar 

  26. Casado-Vara, R., Martin-del Rey, A., Affes, S., Prieto, J., Corchado, J.M.: IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gen. Comput. Syst. 102, 965–977 (2020)

    Article  Google Scholar 

  27. Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Inf. Sci. 180(10), 2029–2043 (2010)

    Article  Google Scholar 

  28. Casado-Vara, R., Prieto, J., De la Prieta, F., Corchado, J.M.: How blockchain improves the supply chain: case study alimentary supply chain. Procedia Comput. Sci. 134, 393–398 (2018)

    Article  Google Scholar 

  29. Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 32(4), 307–313 (2002)

    Article  Google Scholar 

  30. González-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., Corchado, J.M.: Energy optimization using a case-based reasoning strategy. Sensors 18(3), 865 (2018)

    Article  Google Scholar 

  31. Díaz, F., Fdez-Riverola, F., Corchado, J.M.: gene-CBR: a case-based reasoning tool for cancer diagnosis using microarray data sets. Comput. Intell. 22(3–4), 254–268 (2006)

    Article  MathSciNet  Google Scholar 

  32. Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fernandez, F., Gonzalez, M.: Maximum likelihood hebbian learning based retrieval method for CBR systems. In: International Conference on Case-Based Reasoning, pp. 107–121. Springer, Heidelberg, June 2003

    Google Scholar 

  33. Ribeiro, C., et al.: Customized normalization clustering meth-odology for consumers with heterogeneous characteristics. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 7(2), 53–69 (2018)

    Article  Google Scholar 

  34. Guillén, J.H., del Rey, A.M., Casado-Vara, R.: Security Countermeasures of a SCIRAS model for advanced malware propagation. IEEE Access 7, 135472–135478 (2019)

    Article  Google Scholar 

  35. Corchado, J.M., Lees, B.: A hybrid case-based model for forecasting. Appl. Artif. Intell. 15(2), 105–127 (2001)

    Article  Google Scholar 

  36. Pawlewski, P., Kluska, K.: Modeling and simulation of bus assembling process using DES/ABS approach. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(1), 59 (2017). ISSN 2255-2863

    Article  Google Scholar 

  37. Silveira, R.A., Lunardi Comarella, R., Lima Rocha Campos, R., Vian, J., De La Prieta, F.: Learning objects recommendation system: issues and approaches for retrieving, indexing and recomend learning objects. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4(4), 69 (2015). ISSN 2255-2863

    Article  Google Scholar 

  38. Fernández-Riverola, F., Diaz, F., Corchado, J.M.: Reducing the memory size of a fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(1), 138–146 (2006)

    Article  Google Scholar 

  39. Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for alzheimer health care. Int. J. Ambient Comput. Intell. (IJACI) 1(1), 15–26 (2009)

    Article  Google Scholar 

  40. Gómez, J., Alamán, X., Montoro, G., Torrado, J.C., Plaza, A.: Am ICog – mobile technologies to assist people with cognitive disabilities in the workplace. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 2(4), 9–17 (2013). ISSN 2255-2863

    Article  Google Scholar 

  41. Corchado, J.M., Fyfe, C.: Unsupervised neural method for temperature forecasting. Artif. Intell. Eng. 13(4), 351–357 (1999)

    Article  Google Scholar 

  42. Mendez, J.R., Fdez-Riverola, F., Diaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. In: Industrial Conference on Data Mining, pp. 106–120. Springer, Heidelberg, July 2006

    Google Scholar 

  43. Aranda Serna, F.J., Belda Iniesta, J.: The delimitation of freedom of speech on the internet: the confrontation of rights and digital censorship. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 7(1), 5–12 (2018)

    Article  Google Scholar 

  44. Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4), 8239–8246 (2009)

    Article  Google Scholar 

  45. Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. (2018)

    Google Scholar 

  46. Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Eng. Intell. Syst. Electr. Eng. Commun. 10(3), 173–185 (2002)

    Google Scholar 

  47. Fyfe, C., Corchado, J.M.: Automating the construction of CBR systems using kernel methods. Int. J. Intell. Syst. 16(4), 571–586 (2001)

    Article  Google Scholar 

  48. Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E., Omatu, S., Corchado, J.M.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PloS One 9(7) (2014)

    Google Scholar 

  49. Martín del Rey, A., Casado Vara, R., Hernández Serrano, D.: Reversibility of symmetric linear cellular automata with radius r = 3. Mathematics 7(9), 816 (2019)

    Article  Google Scholar 

  50. Casado-Vara, R., Novais, P., Gil, A.B., Prieto, J., Corchado, J.M.: Distributed continuous-time fault estimation control for multiple devices in IoT networks. IEEE Access 7, 11972–11984 (2019)

    Article  Google Scholar 

  51. Espinosa Vera, J.S.: Human rights in the ethical protection of youth in social networks-the case of Colombia and Peru. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(4), 71–79 (2017)

    Article  Google Scholar 

  52. Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management. Inf. Fusion 49, 227–239 (2019)

    Article  Google Scholar 

  53. Farias, G.P., et al.: Predicting plan failure by monitoring action sequences and duration. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(4), 55–69 (2017)

    Article  MathSciNet  Google Scholar 

  54. Van Haare Heijmeijer, A., Vaz Alves, G.: Development of a middleware between SUMO simulation tool and JaCaMo framework. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 7(2), 5–15

    Google Scholar 

  55. Durik, B.O.: Organisational metamodel for large-scale multi-agent systems: first steps towards modelling organisation dynamics. Adv. Distrib. Comput. Artif. Intell. J. 6(3), 17 (2017). ISSN 2255-2863

    Google Scholar 

  56. da Silveira Glaeser, S., et al.: Modeling of circadian rhythm under influence of pain: an approach based on multi-agent simulation. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 7(2), 17–25 (2018)

    Article  Google Scholar 

  57. Srivastava, V., Purwar, R.: An extension of local mesh peak valley edge based feature descriptor for image retrieval in bio-medical images. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 7(1), 77–89 (2018)

    Article  Google Scholar 

  58. Silveira, R., Da Silva Bitencourt, G.K., Gelaim, T.Â., Marchi, J., De La Prieta, F.: Towards a model of open and reliable cognitive multiagent systems: dealing with trust and emotions. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4(3), 57 (2015). ISSN 2255-2863

    Article  Google Scholar 

  59. González, C., Burguillo, J.C., Llamas, M., Laza, R.: Designing intelligent tutoring systems: a personalization strategy using case-based reasoning and multi-agent systems. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 2(1), 41–54 (2013). ISSN 2255-2863

    Article  Google Scholar 

  60. Ayala, D., Roldán, J.C., Ruiz, D., Gallego, F.O.: An approach for discovering keywords from Spanish tweets using Wikipedia. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4(2), 73–88 (2015). ISSN 2255-2863

    Article  Google Scholar 

  61. del Rey, Á.M., Batista, F.K., Dios, A.Q.: Malware propagation in wireless sensor networks: global models vs individual-based models. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(3), 5–15 (2017). ISSN 2255-2863

    Article  Google Scholar 

  62. Cooper, V.N., Haddad, H.M., Shahriar, H.: Android malware detection using Kullback-Leibler divergence. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 3(2) (2014). ISSN 2255-2863

    Google Scholar 

  63. Saadi, B.A.K., Ghanib, N.A.M., Liong, C.-Y., Jemain, A.A.: Firearm classification using neural networks on ring of firing pin impression images. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 1(3), 27–34 (2012). ISSN 2255-2863

    Google Scholar 

  64. Castellanos Garzón, J.A., Ramos González, J.: A gene selection approach based on clustering for classification tasks in colon cancer. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4(3) (2015). ISSN 2255-2863

    Google Scholar 

  65. Ueno, M., Mori, N., Matsumoto, K.: Picture models for 2-scene comics creating system. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 3(2), 53–64 (2014). ISSN 2255-2863

    Article  Google Scholar 

  66. Farias, G.P., Pereira, R.F., Hilgert, L.W., Meneguzzi, F., Vieira, R., Bordini, R.H.: Predicting plan failure by monitoring action sequences and duration. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(2), 71–84 (2017). ISSN 2255-2863

    Article  Google Scholar 

  67. Gholipour, N., Arianyan, E., Buyya, R.: A novel energy-aware resource management technique using joint VM and container consolidation approach for green computing in cloud data centers. Simul. Model. Pract. Theory, 102127, (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niloofar Gholipour or Niloufar Shoeibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Gholipour, N., Shoeibi, N., Arianyan, E. (2021). RETRACTED CHAPTER: An Energy-Aware Dynamic Resource Management Technique Using Deep Q-Learning Algorithm and Joint VM and Container Consolidation Approach for Green Computing in Cloud Data Centers. In: Rodríguez González, S., et al. Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. DCAI 2020. Advances in Intelligent Systems and Computing, vol 1242. Springer, Cham. https://doi.org/10.1007/978-3-030-53829-3_26

Download citation

Publish with us

Policies and ethics