
An Ant Colony Optimization Algorithm Based
Automated Generation of Software Test Cases

Saju Sankar S1(B) and Vinod Chandra S S2(B)

1 Department of Computer Engineering, Government Polytechnic College, Punalur, India
tkmce@rediffmail.com

2 Department of Computer Science, University of Kerala, Thiruvananthapuram 695581, India
vinod@keralauniversity.ac.in

Abstract. Software testing is an important process of detecting bugs in the soft-
ware product thereby a quality software product is developed. Verification and
Validation (V & V) activities are the effective methods employed to achieve qual-
ity. Static and dynamic testing activities are performed duringV&V.During static
testing, the program code is not executed while in dynamic testing (Black Box
and White Box), the execution of the program code is performed. Effective test
cases are designed by both these methods. Tables are employed to represent test
case documentation. The most beneficial representation - State table based test-
ing, for generating test inputs is explained with the help of state graphs and state
tables. This technique is mainly employed in embedded system software testing,
real time applications and web application based software product testing where
time constraints are a major criteria. Automatic generation of test cases will help
to reduce time overhead in testing activities. Our study is to develop optimum
test cases by a modified Ant Colony Optimization (ACO) technique in an auto-
mated method and it ensures maximum coverage. The prediction model used in
this paper ensures better accuracy of the design of test inputs. A comparison of
the similar optimization techniques was also discussed that is used in automated
test case generation. A case study of the various states during the execution of a
task in an operating system has been presented to illustrate our approach.

Keywords: Ant Colony Optimization · Software · Automated · Test cases ·
Pheromone

1 Introduction

A software product should be reliable and measurable. These qualities are evaluated
by way of effective testing activities. Hence testing is an important stage of Software
Development Life Cycle (SDLC). Like SDLC, Software Testing Life Cycle (STLC)
is also a process which detects bugs or faults so as to rectify them before delivery
of the software product to the customer. The testing of the various phases of STLC
by way of manual testing is difficult due to the overhead of time, cost and schedule
slippage. Hence automated testing is complemented for majority of the testing activities
[1]. This automated generation of test cases is necessary when a set of tests are to be

© Springer Nature Switzerland AG 2020
Y. Tan et al. (Eds.): ICSI 2020, LNCS 12145, pp. 231–239, 2020.
https://doi.org/10.1007/978-3-030-53956-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53956-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-53956-6_21


232 Saju Sankar S and Vinod Chandra S S

done repeatedly, compatibility testing, regression testing etc. For this purpose, artificial
intelligence techniques are adopted with a Meta heuristic approach. The problem of
generating sets of test cases for functional testing, structural testing etc. are achieved by
automated test case generation techniques [2].

In this paper, we propose an optimal algorithm for the automated generation of test
cases based on Ant Colony Optimization (ACO). State table based testing - a black box
testing technique is employed, which assures a higher level of functional testing of the
individualmodules. Here the process is categorized as – software environmentmodeling,
test case selection, test case execution, test metrics and automated test suite reduction
techniques [3].

A software product can be optimized by various algorithms such as genetic algo-
rithms, ACO, Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC) etc.
The ACO algorithm is a metaheuristic intelligent optimization method. The algorithm is
used for finding the optimal path in a graph. ACO is also employed for the optimization
of test case generation techniques namely functional testing, Structural testing, Regres-
sion testing etc. [4]. Praveen et al. proposed an ACO based automated software testing
technique which shows the generation of optimal test cases in an automated environment
[5].

This paper proposes an automated method of generating test cases in functional
testing technique mainly state table based testing, optimized by an ACO algorithm. The
results are compared with other optimization models for effectiveness [6].

2 State Table Based Testing

State table based testing is defined as the black box testing technique in which changes
in input conditions cause state changes in the application under test [7]. It is a convenient
method for testing software systemswhere states and transitions are specified. Tables are
used for representing information relating to the design of test cases.Wehave represented
them using state transition diagrams and state tables. A state table representation has a)
Finite State Machine (FSM), a model whose output is dependent on both previous and
present inputs. An FSM model represents the software behavior and serves as a guide
to design functional test cases. b) State transition diagram or state graph, is a software
system which has different states depending on its input and time. The nodes in a state
graph represent states. The nodes are connected by links denoted as transitions. With the
help of nodes and transitions, a state graph is prepared. The pictorial representation of an
FSM is depicted by a state graph and it represents the states that the system can assume.
The state graph is converted to a tabular form known as state tables. They specify states,
input events, transitions and outputs. The information contained in the state graph and
the state table is converted into test cases.

The state table contains cells of valid and invalid inputs. Valid inputs causes a change
of state and invalid inputs do not cause any change in transition in the state of a task.
Due to the tremendous overhead of time and cost exhaustive testing is not possible. The
solution is to formulate a strategy for test case reduction without affecting the functional
coverage of the system under test. The genetic algorithms employed currently have to
be modified for the above [8].



An Ant Colony Optimization Algorithm Based Automated Generation 233

The method of state table based testing is depicted with a case study, showing the
different states of a task in an operating system. A task or job assigned to an operating
system has the states – New, Ready, Running, Waiting, Terminated. The state graph is
drawn as the first step. The state graph can be represented as a directed graph G = (N,
E), where N denotes the states (nodes) of the system under test and E denotes the edges
or transition between the states.

Fig. 1. State graph.

The transition events are Admitted T1, Dispatch T2, Interrupt T3, I/O Wait T4, I/O
Completion T5 and Exit T6. From the state graph, a state table is prepared.

Table 1. State table

State/Input
Event

Admit Dispatch Interrupt I/O Wait I/O
Completion

Exit

New Ready/T1 New/T0 New/T0 New/T0 New/T0 New/T0

Ready Ready/T1 Running/T2 Ready/T1 Ready/T1 Ready/T1 Ready/T 1

Running Running/T2 Running/T2 Ready/T3 Waiting/T4 Running/T2 Terminated/T6

Waiting Waiting/T4 Waiting/T4 Waiting/T4 Waiting/T4 Ready/T5 Waiting/T4

Table 1 contains cells of valid and invalid inputs. From the state table, test cases are
derived. The test cases generated are stored in a tabular form known as test case table
and it contains six columns.

The test case table (Table 2) shows that 24 test cases are generated consisting of
both valid and invalid test cases. We have to differentiate the valid and invalid test cases.
Higher number of invalid test cases shows weak coverage. The solution can be obtained
by reducing the test cases by prioritizing the test cases by following the rules.

a. Develop test cases consisting of valid test cases that cause a change of state.
b. Create test cases such that all test paths are executed at least once and the paths

should be feasible.



234 Saju Sankar S and Vinod Chandra S S

Table 2. Test case table

Test case ID Test source Input Expected Output

Current state Event Output Next state

TC 1 Cell 1 New Admit T1 Ready

TC 2 Cell 2 New Dispatch T0 New

TC 3 Cell 3 New Interrupt T0 New

TC 4 Cell 4 New I/O wait T0 New

TC 5 Cell 5 New I/O completion T0 New

TC 6 Cell 6 New Exit T0 New

TC 7 Cell 7 Ready Admit T1 Ready

TC 8 Cell 8 Ready Dispatch T2 Running

TC 9 Cell 9 Ready Interrupt T1 Ready

TC 10 Cell 10 Ready I/O wait T1 Ready

TC 11 Cell 11 Ready I/O completion T1 Ready

TC 12 Cell 12 Ready Exit T1 Ready

TC 13 Cell 13 Running Admit T2 Running

TC 14 Cell 14 Running Dispatch T2 Running

TC 15 Cell 15 Running Interrupt T3 Ready

TC 16 Cell 16 Running I/O wait T4 Waiting

TC 17 Cell 17 Running I/O completion T2 Running

TC 18 Cell 18 Running Exit T6 Terminated

TC 19 Cell 19 Waiting Admit T4 Waiting

TC 20 Cell 20 Waiting Dispatch T4 Waiting

TC 21 Cell 21 Waiting Interrupt T4 Waiting

TC 22 Cell 22 Waiting I/O wait T4 Waiting

TC 23 Cell 23 Waiting I/O completion T5 Ready

TC 24 Cell 24 Waiting Exit T4 Waiting

c. The inputs which do not cause change in transition have to be identified from the
state table.

As shown in Fig. 1, there are two paths which satisfy rule b.
1. N0 → N1 → N2 → N4
2. N0 → N1 → N2 → N3 → N1 → N2 → N4



An Ant Colony Optimization Algorithm Based Automated Generation 235

3 ACO Algorithm for Test Case Generation

ACO is a probabilistic techniquewhich searches for optimal path in a graph.Ant behavior
is looking a shortest path between their colony and location of food source. The path
is discovered by pheromone deposits when the ants move at random. More pheromone
deposits on a path increases the probability of the path being followed. The path is
selected based on the maximum pheromone deposit from start node and the path is
analyzed for optimality [9].

The behavior of ants can be used for solving the problem. Selection of paths depends
upon the theory of probability. Ants generate pheromone and deposits on the paths for
further remembrance and it is a heuristic technique.Thepath visibility is accomplishedby
the level of pheromone intensity and heuristic information. The feasible path is selected
based on highest pheromone level and heuristic information. The algorithm needs four
parameters for selecting the valid transitions of the state graph – Probability, Heuristic
information, Pheromone intensity and Visibility of the path [10].

Kamna et al. evaluated the performances of genetic algorithm (GA), Bee Colony
optimization (BCO), ACO and modified ACO (m-ACO) for test case prioritization in
terms of Average Percentage of Faults Detected (APFD) and Percentage of Test Cases
Required (PTR) metric [6]. The metrics was evaluated by the case studies for triangle
problem, quadratic equation problem etc. (Table 3).

Table 3. Comparison of GA, BCO, ACO and m-ACO for APFD and PTR.

APFD PTR

GA BCO ACO m-ACO GA BCO ACO m-ACO

Triangle problem 0.88 0.95 0.93 0.97 18 12 16 12

Quadratic problem 0.86 0.91 0.89 0.93 20 18 18 16

The comparison shows that m-ACO algorithm shows better coverage than the other
optimization algorithms.

In order to classify or to select the valid test cases, we used the modified algorithm
‘Comprehensive ImprovedAnt ColonyOptimization (ACIACO) for finding the effective
optimization path and this path model is used to achieve highest coverage and reduce
the number of iterations [11]. The establishment of transformation relationship makes
effective use of ant colony algorithm for iterative optimization of test cases.

In this paper, generating the test cases from the state table is achieved by themodified
ACO algorithm. The algorithm is for the effective traversing through the different states.
Also the feasible test cases are generated so as to cover all transitions at least once. The
procedure is given,

1. Initialize parameters.

1.1 Set heuristic value (ï).
Initialize heuristic value of each transition in the state graph Ƞ =2.



236 Saju Sankar S and Vinod Chandra S S

1.2 Set pheromone intensity (Ʈ).
Initialize pheromone value for each transition in the state graph (Ʈ=1).

1.3 Set visited status (Vs).
Initialize Vs = 0 (the condition in which ant not visited any state).

1.4 Set probability (P).
Initialize P = 0.

1.5 Initialize α =1, β =1, the parameters which controls the desirability and
visibility.

1.6 Set count = maximum number of possible transitions.

2. While (count > 0)

2.1 Update the paths or visited status of the paths Vs [i] = 1.
2.2 Evaluate feasible path F (P), if any from the first node to the next node in the

state graph. Else go to step 6.
2.3 Evaluate probability of the path.

The probability has values between 0 and 1.

3. Move to the next node.

3.1 Select the destination node. Ant will follow the rules.

3.1.1 If there is self-transition from (i → i), select it.
3.1.2 Else select the transition not visited. (Vs=0).
3.1.3 Else if two or more transition having the same visited status Vs[j] =

Vs[k], then random selection of the node.

4. Update values of Pheromone and heuristic.

4.1 Update pheromone intensity, Ʈij = (Ʈij)α * (ïij)−β

4.2 Update heuristic, Ƞij = 2 * (ïij).
4.3 Update count, Decrement count by one each step.

5. Go to step 2.
6. Stop.

4 Results and Discussion

We have discussed how the test cases are minimized while maximizing coverage of
testing. If there are ‘n’ states in a state graph, then there will be a maximum of ‘n*n’
test cases both feasible and infeasible generated thereby increasing the testing time
overhead. For the automated generation of test cases, we used an open source testing



An Ant Colony Optimization Algorithm Based Automated Generation 237

tool multidimensional modified condition/decision coverage which supports state graph
based testing and generates test cases by traversing through the state transition graph
[12].

The test cases given in Table 2, twenty four test cases both valid and invalid, which
cause or do not cause change in transition from one state to another during the execution
of a task has to be minimized.

4.1 Steps for Minimizing Test Cases

Wang’s algorithm [13] was used for the effective reduction of test cases.

1. Calculate node coverage (NC) for each test case.
Let NC (tc) = t1, t2 … tn, where t1, t2, …. tn are transitions.

2. If a number of set tc = 0, then tc is included in the effective set of test cases.
3. Final set of test cases is generated.

In our case study, the algorithm is implemented as
N = {N0, N1, N2, N3, N4} representing the nodes.
ID = {ID1, ID2, …. ID6} representing input data.
OD = {OD1, OD2, …. OD6} representing output data.
T = {T1, T2, …. T6} representing transitions.
Ti is a transition from source node to the destination node.
Ti = {Np, Nq}, where Np is the source node and Nq is the destination node.
The next step is to extract each transition,
T1 = {N0, N1} to T6 = {N2, N4}.
After completely extracting all the transitions, the next step is to generate the test

cases from TC1 to TC24.
The last step is to reduce the set of generated test cases by calculating the node

coverage for each test case and determining which test cases are covered by other test
cases. i.e. from NC(TC1) to NC(TC24). The test cases are valid if the node coverage is
empty. All other test cases are invalid and can be ignored.

Hence the six valid test cases which causes state transitions in the execution of a task
in an operating system are Test Suite, TS = {TC1, TC8, TC15, TC16, TC18, TC23} as
shown in Table 4.

Table 4. Cells containing valid test cases.

State/Input
Event

Admit Dispatch Interrupt I/O Wait I/O
Completion

Exit

New Ready/T1

Ready Running/T2

Running Ready/T3 Waiting/T4 Terminated/T6

Waiting Ready/T5



238 Saju Sankar S and Vinod Chandra S S

This reduction in test suite helps saving of time in resource constrained software
projects. The ACIACO algorithm effectively covered the criteria such as reduced test
suite size, improved fault detection capability, reduced time, cost and highest coverage
criteria. A comparison of the three kinds of coverage – statement coverage, branch cov-
erage and modified condition/decision coverage shows that the modified ACIACO algo-
rithm obtained better values as shown in Table 5. It is evident that the ACO optimization
algorithm will effectively improve the quality of the test cases generated.

Table 5. The coverage of different ant numbers on ACIACO

ACIACO Statement coverage Branch coverage Modified condition/Decision Coverage

8 ants 82.37% 64.30% 17.17%

32 ants 94.38% 80.23% 35.55%

56 ants 97.89% 87.77% 45.25%

88 ants 100.00% 100.00% 76.13%

5 Conclusion

We have proposed a modified ACO based approach for the automated and effective gen-
eration of valid test cases for the state transition based software testing. An FSM model
is prepared. From the model, a state graph followed a state table and a test case table was
generated. Also a test suite reduction algorithm is implemented thereby the optimiza-
tion is achieved. ACO is a promising methodology for test case generation, selection and
prioritization problem. ACO algorithm fully satisfies software coverage without having
any redundancy. The power of nature inspired models in software engineering area is
emerging because of its optimization outcome. The swarm based optimization is evolv-
ing in many of the software optimization fields. It is highly recommended, agent and
swarm fused optimization algorithms can be used to generate efficient automated test
environments.

References

1. Setiani, N., et al.: Literature review on test case generation approach. In: ICSIM 2019 Pro-
ceedings of the Second International Conference on Software Engineering and Information
Management, pp. 91– 95, January 2019

2. Tahbildar, H., Kalita, B.: Automated software test data generation: direction of research. Int.
J. Comput. Sci. Eng. IJCSES 2, 99–120 (2011)

3. Swain, T.R., et al.: Generation and optimization of test cases for object oriented software
using state chart diagram, CS & IT – CSCP (2012)

4. Singh, G., et al.: Evaluation of test cases using ACOwith a new heuristic function: a proposed
approach. Int. J. Adv. Res. Comput. Sci. Softw. Eng. IJARCSSE (2014)



An Ant Colony Optimization Algorithm Based Automated Generation 239

5. Srivastava, P.: Structured testing using ant colony optimization. In: Proceedings of the First
International Conference on Intelligent Interactive Technologies and Multimedia, pp. 203–
207. IITM, ACM India, December 2010

6. Kamna, S., et al.: AComparative evaluation of ‘m-ACO’ technique for test suite prioritization.
Indian J. Sci. Technol. 9(30), 1–10 (2016)

7. Li, H., Lam, C.P.: An ant colony optimization approach to test sequence generation for
state based software testing. In: Proceedings of the fifth international conference on quality
software, QSIC. IEEE (2005)

8. Thakur, P.,Varma,T.:A survey on test case selection using optimization techniques in software
testing. Int. J. Innov. Sci. Eng. Technol. IJISET 2, 593–596 (2015)

9. Vinod Chandra, S.S.: Smell detection agent based optimization algorithm. J. Insti. Eng. 97(3),
431–436 (2016). https://doi.org/10.1007/s40031-014-0182-0

10. Srivastava, P.: Baby: automatic test sequence generation for state transition testing via ACO,
IGI, Global (2010)

11. Shunkun et al.: Improved Ant algorithm for software testing cases generation. The Sci. World
J. (2014)

12. Maheshwari, V., Prasanna, M.: Generation of test case using automation in software systems
– a review. Indian J. Sci. Technol. 8(35), 1 (2015)

13. Linzhang, W., et al.: Generating test cases from UML activity diagram based on gray-
box method. In: Proceedings of the 11th Asia-Pacific Software Engineering Conference
(APSEC04) (2004)

https://doi.org/10.1007/s40031-014-0182-0

	An Ant Colony Optimization Algorithm Based Automated Generation of Software Test Cases
	1 Introduction
	2 State Table Based Testing
	3 ACO Algorithm for Test Case Generation
	4 Results and Discussion
	4.1 Steps for Minimizing Test Cases

	5 Conclusion
	References




