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Abstract. With the increasing of the decision variables in multi-objective com-
binatorial optimization problems, the traditional evolutionary algorithms perform
worse due to the low efficiency for generating the offspring by a stochastic mech-
anism. To address the issue, a multi-objective combinatorial generative adversar-
ial optimization method is proposed to make the algorithm capable of learning
the implicit information embodied in the evolution process. After classifying the
optimal non-dominated solutions in the current generation as real data, the gener-
ative adversarial network (GAN) is trained by them, with the purpose of learning
their distribution information. The Adam algorithm that employs the adaptively
learning rate for each parameter is introduced to update the main parameters of
GAN. Following that, an offspring reproduction strategy is designed to form a new
feasible solution from the decimal output of the generator. To further verify the
rationality of the proposed method, it is applied to solve the participant selection
problem of the crowdsensing and the detailed offspring reproduction strategy is
given. The experimental results for the crowdsensing systems with various tasks
and participants show that the proposed algorithm outperforms the others in both
convergence and distribution.
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1 Introduction

Multi-objective combinatorial optimization problems (MOCOPs), such as traveling
salesman problem, vehicle routing planning, participant selection problem of crowdsens-
ing and so on, is to find the optimal resource assignment that takes multiple objectives
into consideration [1, 2]. To address the issues, the classical linear programming, meta-
heuristic search, evolutionary algorithm, and some other population-based intelligent
optimization algorithms are introduced. However, with the increasing of the decision
variables, the exploration ability of above-mentioned algorithms become limited due to
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the low efficiency for generating diverse offspring by a stochastic mechanism. Many
researchers [3—7] employed the handcrafted strategies that were especially designed
according to the characteristics of specific problems to improve the performance. How-
ever, such problem-specific methods depends a lot on the artificial experience. The recent
advances [8—11] in machine learning algorithms have shown their strong ability of help-
ing engineers to design optimization algorithms with learning ability to solve different
problems with a relatively good performance. Based on this, various studies [12—14]
have tried to utilize the neurol networks to learn the useful information about the fitness
landscape or the distribution of the individuals to generate the more rational offspring.
But a large number of the training data must be provided for building the learning models,
which is always difficult or expensive to be achieved in practice.

The Generative Adversarial Networks (GAN) proposed by Goodfellow in 2014 is
able to learn high-dimensional distributions efficiently with the limited training data
by the following adversarial learning mechanism [15], which consists of a generator
and a discriminator [16]. The former learns the distribution P, (x) of a real data x
and generates a new sample G(z) with the prior distribution Py, (x), while the latter
works hard on identifying whether the sample is real or fake, and outputs a discriminant
probability D(x). More specifically, the generator tries to produce the samples as real
as possible, with the purpose of decreasing the accuracy of a discriminator. By contrast,
the discriminator makes an effort on enhancing its recognition ability. Both of them are
trained in a minimax game manner as follows.

minmax V (D, G) = Exer,,10g D) + Exep,,, llog(1 = DG@)] ()

Various studies have been done on GAN-based optimization algorithms, in which the
offspring is generated along the direction learned from the distribution of the better candi-
date solutions. Tan et al. [17] proposed a generative adversarial optimization framework
for continuous optimization problems with a single objective. A new solution is pro-
duced from a candidate with the input noise by the generator, and then the discriminator
predicts whether the fitness value of a generated solution is better than that of the orig-
inal candidate. He et al. [15] first presented a GAN-based multi-objective evolutionary
algorithm. The candidates are classified into two datasets that are labeled as real and
fake, respectively. After training the generator with the above samples, the offspring is
formed by it or the genetic operators with the same probability. Despite the application
of GAN on continuous optimization problems, fewer works have been done on the com-
binatorial optimization problems. Probst [18] employed GAN to build the probability
model that approximates the distribution of the candidates in the estimation of distribu-
tion algorithm. The offspring are gotten from the probability model, with the purpose
of finding the optima for a scalar combinatorial optimization problem. Being different
from it, a multi-objective combinatorial generative adversarial optimization algorithm
(MOCGADO) is proposed for the MOCOPs in this paper. And the main contributions of
this study are summarized as follows:

(1) MOCGAO takes advantage of the learning and generative abilities of GAN to
generate superior solutions for the MOCOPs.
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(2) Aclassification strategy is developed to identify the non-dominated solutions found
in the evolution as the real samples for training GAN, as they provide the distribution
information of the population.

(3) An offspring reproduction strategy is designed to form a new feasible solution from
the decimal output of the generator for the MOCOPs.

(4) The proposed method is applied to solve the participant selection problem of the
crowdsensing and the detailed offspring reproduction strategy is given.

The rest of the paper is organized as follows. In Sect. 2, the key issues of multi-
objective combinatorial generative adversarial optimization are presented in detail.
MOCGAO-based participant selection strategy for the crowdsensing is illustrated in
Sect. 3. The experimental results are compared and further analyzed in Sect. 4. Finally,
Sect. 5 concludes the whole paper and plans the topic to be researched in the future.

2 Multi-objective Combinatorial Generative Adversarial
Optimization

According to the algorithm steps of MOCGAO shown in Algorithm 1, the initial popu-
lation P(0) is constructed by the randomly produced individuals and the optima of each
objective obtained by the greedy algorithm. The latter ones provide the extremum for
training GAN so as to speed up the convergence of the network. After training GAN by
the classified individuals, the generator outputs the offspring Q(¢). N individuals selected
from the combination of P(¢) and Q(¢) by the non-domination sort and elite selection
strategy of NSGA-II, compose of the population in the next generation P(¢ + 1). Finally,
the Pareto-optimal solution is found until the termination condition is satisfied. Appar-
ently, the key issues of the proposed method are to classify the population, train GAN
and reproduce the offspring. The detailed selection strategy of NSGA-II refer to Ref.
[19].

Algorithm 1: Multi-objective combinatorial generative adversarial optimization algorithm

Input: the population size N, the number of objectives M , the maximum termination
iteration T’
Output: PS
Net €Randomly initialize the GAN;
P(0) €Randomly initialize N—M individuals;
P(0) €Add the optimal individual of each objective by the greedy algorithm;
For =1:T do
X € Classification( P(f));
(O(t) - Net )€ Training GAN ( Net , X);
P(t +1) €Selection( P(r)wO(t) » N )
End
Obtain the Pareto-optimal solutions PS .
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2.1 The Classification of the Population

Both the real and fake samples provide effective information for training GAN. For
image processing [20-22] and text generation [23], the real data distributions of the
images and texts are normally obtained in advance. However, it is difficult to know the
fitness landscape, even the true Pareto-optimal solutions before the evolution of actual
multi-objective optimization problems. To address the issue, He et al. [15] partitioned
the population in each generation into two datasets with the same size, and the one with
the better convergence and diversity is treated as real samples. However, both the non-
dominate individuals and the dominated ones with the even distribution are classified
to form the training data. The latter is conducive to form the GAN that can produce
the offspring with better diversity, but the distribution of the worse individuals also is
learned by GAN, which slows down the convergence speed.

Different from it, only the non-dominated individuals are labeled as real and
employed to form the real dataset x". The rest of the population are classified into the
fake dataset ' . Because GAN iteratively learns only the distribution of better solutions,
the generated offspring may more approximate to the true Pareto solutions.

@)

x" x; is a non-dominated solution
i .
¥ otherwise

2.2 Training GAN

The generator and discriminator of MOCGAO both consist of the feedforward neural
network with a single hidden layer, as shown in Fig. 1. Each node in the hidden layer
employs the ReLu activation function, while the nodes in the output layer adopt the
sigmoid function.

X
X
z~U(-1,1) relu() sigmoid( ) x’ relu()

Generator(G) Discriminator(D)

Offspring
reproduction

[of) |5

sigmoid( )
Discriminant
probability

Fig. 1. The structure of GAN

The noise obeying the continuous uniform distribution Z ~ U (—1, 1) is employed
as the input signal to the generator. Following that, the output of G(z) is transformed
into an offspring X by the offspring reproduction strategy Off (). The generated sample
X is utilized to calculate the loss function of the generator as follows.

1 N lo(1
Vo=, log(1 = DOff (G)) (3)
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Subsequently, the real samples x”, the fake ones x and the generated ones X are all
employed to train the discriminator. The comprehensive loss function is defined.

- 1 Ix"| . 1 |+ | 1 N -
o= > log D) + il D Jog(l = DOD) + 3 log(l = D)
“4)

The parameters of GAN are learned by the Adam algorithm [24], in which each parameter
remains the various learning rate, instead of the traditional gradient descent method.

2.3 The Offspring Reproduction Strategy

For most of the combinatorial optimization problems, a solution is normally encoded
by the binary or the integer. However, the outputs of the generator in GAN is a decimal
between 0 and 1, which cannot represent an individual of a combinatorial optimization
problem directly. To this end, a novel offspring reproduction strategy is presented, with
the purpose of forming an available individual based on the decimal output of GAN.

The number of neurons in the output layer of a generator is equal to the dimension
of decision variables. For a binary-coded individual, the output of each neuron is treated
as the probability of each gene being set to 1. In the offspring reproduction strategy, the
output of all neurons in the generator are sorted in the descending order, and the variable
corresponding to the first unselected one is labeled by 1. Different from it, the possible
integer-values of the decision variables are assigned to the genes corresponding to the
sorted neurons in the same descending order. That is, the maximum integer-value is first
set to the gene corresponding to the neuron having the maximum output. As shown in
Fig. 2, the same decimal output of a generator is mapped to the different offspring in
terms of the encoding scheme of an individual.

The output of a generator |0.351|0.174(0.293
The binary individual 1 n
The integer-coded individual 1

Fig. 2. An example of an offspring reproduction strategy

3 MOCGAO-Based Participant Selection of a Crowdsensing
System

To verify the effectiveness of the proposed MOCGAO algorithm, it is applied to the
participant selection problem of Crowdsensing, which allocates all the sensing tasks to
suitable participants that are selected from the sensing-user set. Assume that the sensing
tasks denoted as T = {1, 12, ..., t,y} are published on the crowdsensing system, and
the mobile users expressed by U = {uy, uz, ..., u,} want to participate the works as
executors. Suppose that each task need to be fulfilled by & users, and each user is assigned
to at most one task. Let e;; and a;; be the sensing ability and reward of the user u; for the
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task #;, respectively. Moreover, the sensing ability is determined by the distance between
the task and the user, and the reward depends on the sharing mechanism of reward for
the user and his cooperative friend. More details refer to Reference [25]. Based on this,
a participant selection model that maximize both the sensing quality of tasks and the
reward of participants can be constructed as follow:

max f] = Z Z ejXij
i
max f = Z Z agx;j
i
sit. &= x; Viell,m
J

5
Zx,-jf 1,Vi € [1,n] ®)

In the above formula, [x;j]uxn is the Task-User matrix, as shown in Fig. 3(a). x;; = 1
means that the task is allocated to the jth user. The Task-User matrix is converted to the
binary vector, as shown in Fig. 3(b), with the purpose of simplifying the training process

of GAN.
[100001}
x=
000110

(a) Task-User matrix

3}

x 1 o o o 1 o o o 1 1 o

t1 t2
(b) Individual vector

Fig. 3. An example of an individual (m =2,n =6,& = 2)

According to the above-mentioned encoding scheme of the participant selection
model, the output of each neuron in the output layer of a generator represents the prob-
ability of a user being assigned to a task. In order to obtain the feasible offspring by the
proposed offspring reproduction strategy, the number of neurons is set to m*n. For each
task, £ unallocated users are selected to complete the task in the descending order of the
corresponding probability, and the corresponding gene is set to 1.

As shown in Fig. 4, two tasks are allocated to six users in the crowdsensing system,
and each task needs two participants. For the task 7, the two users with the maximum
probability, u; and ug, are selected. The first and sixth genes are set to 1. u4 and us are
chosen to carry out ;. ug having a higher probability than us is not employed by this
task because of the constraint for the available users.

Generated |5 g1510.278
sample

1

0.412(0.117(0.476|0.673| 0.368(0.194| 0.047|0.798| 0.582| 0.595,

Offspring

Fig. 4. An example of the offspring reproduction (m =2,n=6,£ = 2)
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4 Experimental Results and Discussion

Fully experiments are conducted to examine the performance of the proposed MOCGAO.
The main experimental parameters are listed in Table 1, and the other parameters of the
participant selection problem refer to paper [25]. Besides, the hypervolume (HV) and
coverage(C) metrics [26] are employed to evaluate the performance of the proposed
algorithm, and the best results are labeled by bold.

Table 1. The main parameters

Parameter Value

m (the number of tasks) {5, 10, 15, 20}
n (the number of users) {100, 200, 300}
N (the population size) 100

T (the maximum termination iteration) 100

iter (the training iteration) 3

B1 (the preset constant for Adam) 0.9

B (the preset constant for Adam) 0.999

¢ (the preset constant for Adam) 108

n (the initial learning rate) 0.001

NodeG (the number of nodes for each layer of the Generator) 100, 128, m*n
NodeD (the number of nodes for each layer of the Discriminator) m*n, 128, 1

To verify the effectiveness of the Adam method, we compare the performances
of MOCGAO with the Adam method (Adam) against one with the gradient descent
method (Gradient). From the statistical results listed in Table 2, no matter how many
users participate to complete the tasks, MOCGAO with the Adam method converges to
the best Pareto solutions because the Adam adopts the adaptive learning rate for each
parameter instead of the static on in the gradient descent method, which is more efficient
for training GAN.

The rationality of the Greedy-based initialization method (Greedy) is analyzed by
comparing the performance of MOCGAO with the random initialization strategy (Ran-
dom), as listed in Table 3. Apparently, the extreme of each objective provides more
information on the true distribution of the Pareto front, which is helpful for speeding
up the training process of GAN and generating the more promising offspring. Thus,
MOCGAO with the Greedy-based initialization method can found better Pareto-optimal
solutions, showing the larger HV-values.

Two representative multi-objective evolutionary algorithms, including NSGA-II[19]
and MOEA/D [27] are employed as the comparison algorithms. Figure 5 depicts the
Pareto fronts obtained by the three compared algorithms. It can be observed that the
Pareto-optimal solutions of all instances generated by NSGA-II have the worst con-
vergence, while MOEA/D tends to generate the Pareto solutions distributed in a small
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Table 2. Comparison of the performances for MOCGAOs with different learning methods

m*n HV C
Gradient | Adam | C(Gradient, Adam) | C(Adam, Gradient)

5%100|  6.79 222.76 | 0.00 1.00
5%200 | 23.59 202.64 | 0.00 1.00
5*%300| 17.84 253.20 | 0.00 1.00
10*100 | 64.10 642.33 | 0.00 1.00
10%200 | 105.87 462.18 | 0.00 1.00
10%300 | 97.13 617.41 | 0.00 1.00
15%100 | 132.17 | 1266.88 | 0.00 1.00
15%200 | 110.66 | 1882.61 | 0.00 1.00
15%300 | 21491 |2153.24  0.00 1.00
20*100 | 181.11 | 2664.65 | 0.00 1.00
20%200 | 163.32 | 1917.41 | 0.00 1.00
20%300 | 219.70 | 1873.09 | 0.00 1.00

Table 3. Comparison of the performances for MOCGAOSs with different initialization strategies

m*n HV C
Random Greedy C(Random, Greedy) C(Greedy, Random)

5*100 222.76 290.47 0.00 1.00
5%200 202.64 460.19 0.00 1.00
5*300 253.20 667.13 0.00 1.00
10*100 642.33 1326.42 0.00 1.00
10*200 462.18 1480.75 0.00 1.00
10*300 617.41 2074.57 0.00 1.00
15*100 1266.88 3304.06 0.00 1.00
15*200 1882.61 3906.53 0.00 1.00
15*300 2153.24 5068.72 0.00 1.00
20*100 2664.65 5187.26 0.00 1.00
20%*200 1917.41 6313.68 0.00 1.00
20*300 1873.09 7486.02 0.00 1.00

region, but with the better convergence. In contrast, the Pareto fronts found by the pro-
posed MOCGAO achieve the best performance in both convergence and distribution for
11 out of 12 instances, except for the 10*100 instance. The statistical results of HV and
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C summarized in Tables 4 and 5 confirm the above observations. Consequently, the pro-
posed algorithm outperforms the other compared algorithms due to the better diversity

of the offspring maintained by the improved GAN, especially for the problems with the
large-scale participants.
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Fig. 5. The Pareto fronts found by different algorithms
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Table 4. Comparison of HV for different algorithms

Algorithms | 5¥100 | 5%200 |5%300 | 10*100
NSGA-II | 25591 |401.69 |555.19 | 995.15
MOEA/D | 190.92 |336.97 |510.12 | 900.75
MOCGAO |290.47 |460.19 | 667.13 | 1326.42
Algorithms | 10¥200 | 10*300 | 15*100 | 15%200
NSGA-II 1150.59| 1436.14| 2293.47| 2282.35
MOEA/D | 1361.30| 1508.12| 2021.01| 2951.97
MOCGAO | 1480.75| 2074.57 | 3304.06| 3906.53
Algorithms | 15%300 | 20*100 | 20*200 | 20*300
NSGA-II | 3050.39| 3043.77| 3981.00| 4366.54
MOEA/D | 3515.28| 3144.68 | 4341.35| 5000.99
MOCGAO | 5068.72| 5187.26| 6313.68| 7486.02

Table 5. Comparison of C for different algorithms

m*n C(NSGA-II, C(MOCGAO, C(MOEA/D, C(MOCGAO,
MOCGAO) NSGA-II) MOCGAO) MOEA/D)
5*%100 0.00 1.00 0.00 0.57
5%200 0.00 1.00 0.04 0.38
5%300 0.00 1.00 0.00 1.00
10*100 0.00 1.00 0.09 0.00
10*200 0.00 1.00 0.00 0.75
10*300 0.00 1.00 0.00 1.00
15*100 0.00 1.00 0.03 0.85
15%200 0.00 1.00 0.00 1.00
15*%300 0.00 1.00 0.00 1.00
20*100 0.00 1.00 0.00 0.39
20*200 0.00 1.00 0.00 1.00
20*300 0.00 1.00 0.00 1.00

5 Conclusions

To overcome the weakness of the traditional evolutionary algorithms on solving multi-
objective combinatorial optimization problems with the large-scale decision variables,
a generative adversarial network that has the strong learning and generative abilities
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is introduced to construct a multi-objective combinatorial generative adversarial opti-
mization algorithm. The extreme of each objective obtained by the greedy algorithm
is combined with the randomly produced individuals to form the initial population,
with the purpose of speeding up the training process of GAN. During the evolution,
the optimal non-dominated solutions in the current generation are identified as the real
samples, while the rest are fake. Classified solutions are employed to train GAN. More
specifically, the Adam method with the adaptive learning rate is employed to update
the parameters of GAN, and an offspring reproduction strategy is presented to obtain a
feasible offspring from the decimal output of the generator. Following that, the proposed
algorithm is utilized to solve the participant selection problem of the crowdsensing, and
adetailed offspring reproduction strategy is given. The experiments are conducted on the
crowdsensing system with the various tasks and participants, and the results show that
the proposed algorithm superior to the others in both convergence and distribution. To
combine the evolutionary operators with GAN will be our future work, with the purpose
of generating the offspring with more uniform distribution.
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