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Abstract. Flocking model has been widely used in robotic swarm con-
trol. However, the traditional model still has some problems such as
manually adjusted parameters, poor stability and low adaptability when
dealing with autonomous navigation tasks in large-scale groups and
complex environments. Therefore, it is an important and meaningful
research problem to automatically generate Optimized Flocking model
(O-flocking) with better performance and portability. To solve this prob-
lem, we design Comprehensive Flocking (C-flocking) model which can
meet the requirements of formation keeping, collision avoidance of convex
and non-convex obstacles and directional movement. At the same time,
Genetic Optimization Framework for Flocking Model (GF) is proposed.
The important parameters of C-flocking model are extracted as seeds to
initialize the population, and the offspring are generated through opera-
tions such as crossover and mutation. The offspring model is input into
the experimental scene of autonomous navigation for robotic swarms,
and the comprehensive fitness function value is obtained. The model
with smallest value is selected as the new seed to continue evolution
repeatedly, which finally generates the O-flocking model. The extended
simulation experiments are carried out in more complex scenes, and the
O-flocking and C-flocking are compared. Simulation results show that
the O-flocking model can be migrated and applied to large-scale and
complex scenes, and its performance is better than that of C-flocking
model in most aspects.
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1 Introduction

Robotic swarm system has been increasingly used in complex tasks, such as
search and rescue [1], map drawing [2], target tracking [3], etc., which aims at
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keeping human beings away from the boring, harsh and dangerous environment.
The simple local interaction among individuals in the system produces some new
features and phenomena observed at the system level [4]. These laws are very
similar to their biological counterparts, such as fish [5], bird [6], ant [7] and cell
[8]. Flocking is one of the typical collective forms. This form is robust and flexible
for the agents who join and exit, especially when there are obstacles, dangers,
new tasks and other emergencies. Although flocking has many advantages, it still
faces the problem of low performance caused by large scale, dynamic environment
and other reasons. This phenomenon is more obvious in military projects, such
as GREMLINS [9] and LOCUST [10], because of the worst working environment
for large-scale UAVs which is small, low-cost and semi-autonomous.

Traditional flocking model is mainly designed according to the three princi-
ples of Reynolds: short-distance repulsion, middle-distance alignment and long-
distance attraction [11]. Some researchers considered obstacle avoidance prob-
lems on flocking model. Wang et al. [12] proposed an improved fast flocking
algorithm with obstacle avoidance for multi-agent dynamic systems based on
Olfati-Sabers algorithm. Li et al. [13] studied the flocking problem of multi-
agent systems with obstacle avoidance, in the situation when only a fraction
of the agents have information on the obstacles. Vrohidis et al. [14] consid-
ered a networked multi-robot system operating in an obstacle populated planar
workspace under a single leader-multiple followers architecture. Besides, previ-
ous works applied learning methods or heuristic algorithms on flocking model.
The reinforcement learning (RL) method can adjust the movement strategy in
time by exploring-using ideas, but its performance is not stable enough [15,16].
Vásárhelyi et al. [17] considered the problems faced by the real self-organizing
UAV cluster system and optimized the flocking model using evolutionary algo-
rithm. Previous works improve the flocking model in several aspects, but it is
still a challenge to automatically obtain a stable, scalable and portable flocking
model for robotic swarm. The problems to be solved mainly include:

– Harsh environment. In the actual environment, there may be different kinds
of obstacles, including convex and non-convex ones. The traditional flocking
model is difficult to deal with them easily.

– Limited scale. Increasing scale of robotic swarm will bring new problems, such
as frequent interactions, more conflicts and exceptions.

– Parameter adjustment is difficult. Many parameters need to be set when
designing the system model. The performance of group algorithm depends
not only on expert experience, but also on scientific methods. Especially when
there is correlation between parameters, it is difficult to get the optimal model
quickly [11].

Previous work has not solved these problems comprehensively. In order to
achieve better performance of robotic swarm in complex environment, C-flocking
model is designed and O-flocking model is generated by GF framework. The main
contributions of this paper are as follows:

– We design the C-flocking model, which adds new obstacle avoidance strategies
and directional movement strategy to the Reynolds’ flocking model [19].
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– We propose the Genetic Optimization Framework for Flocking Model (GF).
The O-flocking model is obtained by this framework.

– O-flocking model can be transferred from simple scene model to complex
scene, from small-scale group to large-scale group. Through comparative anal-
ysis with C-flocking model, it is found that the comprehensive performance
of O-flocking model is the best.

The rest of this paper is organized as follows: Sect. 2 analyzes the GF framework,
where the C-flocking model, fitness function, and GF algorithm are introduced.
Section 3 analyzes the experimental results. Summary and future work are intro-
duced in Sect. 4.

2 Genetic Optimization Framework for Flocking Model

Through the analysis of previous researches, we find that it is necessary to auto-
matically generate an optimized flocking model. So we propose GF framework.
The input is C-flocking model and the output is O-flocking model, which meets
the requirements of reliability, scalability and portability. As shown in Fig. 1, in
GF architecture, it is generally divided into robot (agent) layer and environment
layer, among which robot (agent) is divided into three layers, including sensor
layer, decision layer and action layer, which support basic autonomous naviga-
tion functions. Through the rule generalization speed update formula described
by the weight parameter, the weight parameter develops through the interaction
with the environment. Environment is divided into two layers: evaluation layer
and evolution layer. The former provides fitness function for the latter.
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Fig. 1. Genetic optimization framework for flocking model

2.1 C-Flocking Model for Robotic Swarm

In this section, we extend Reynold’s flocking model to C-flocking model, which
simultaneously consider flocking-pattern maintenance, obstacle avoidance, and
directional movements in its velocity updating formula.
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We assume that each agent of flocking moves through a square-shaped arena
with a side length of Larena, where convex and nonconvex obstacles appear. They
need to pass through the arena quickly without death. If they hit each other or
obstacles (including the walls), they disappear, which represents being dead in
our simulation. As shown in Fig. 2, a robot agent i has three detection areas:
exclusion area, alignment area, and attraction area. Among them, the exclusion
zone is the circular zone zorrep with R0 as radius, the alignment zone zorali is
the ring zone between R0 and R1, the attraction zone zoratt is the ring zone
between R1 and R2. The arrow of the agent represents its speed direction, while
the speed direction of other agents in different areas of the agent i is roughly
affected as shown in Fig. 2(a).

R0

R1

R2

zorrep

zorali

zoratt

(a) Pattern-formation
areas

(b) Obstacle avoidance
strategies

Fig. 2. C-flocking model for robotic swarm

If the distance between agents is under rrep
0 , agents will move in the opposite

direction of each other’s connection:

Δvrep
i =

∑

j �=i

(R0 − rij) · pi − pj

rij
. (1)

where rij = |pi − pj | is the distance between agents i and j. pi and pj represent
the position of agent i and j, respectively.

For pairwise alignment, we define the change of velocity relating to the dif-
ference of the velocity vectors of nearby agents [19].

Δvali
i =

1
Nali

∑

j �=i

vj

|vj | . (2)

In Eq. (2), vj is the velocity vector of agent j. Nali is the number of agents
in the area of alignment.

And for Long-range attraction, we define the term as follows:
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Δvatt
i =

∑

j �=i

1
(R2 − rij)

· pj − pi

rij
. (3)

In Eq. (3), ratt = |pi − pj | is the distance between agents i and j. pi and pj

represent the position of agent i and j.
For obstacle avoidance, we virtualize the surface of the obstacle towards

robotic agent i into a series of robotic agents arranged as shown in Fig. 2(b).
Each one of them will influence the velocity of robotic agent i. We define the
change of velocity influenced by obstacles as follows:

Δvobs
i =

∑M

k
(R3 − rik)

pi − pk

rik
, (4)

where R3(R3 > R2 > R1 > R0) is the maximum range of obstacle detection for
robotic agent i, and rik = |pi − pk| is the distance between agent i and virtual
agent k. M is the number of the virtual agents.

For target orientation, we define the change of velocity influenced by target
as follows:

Δvtar
i =

ptar − pi

ritar
. (5)

In Eq. (5), ritar = |ri − rtar| is the distance between agents i and target. ptar

represents the position of target.
We take the sum of all delta velocity proposed above:

vtotal
i (t + Δt) = vi (t) + Δvi. (6)

Δvi = aΔvrep
i + bΔvali

i + cΔvatt
i + dΔvobs

i + eΔvtar
i . (7)

In Eq. (7), we define the weight parameters a,b, c,d, e ∈ (0, 1), which is used
to flexibly handle the generalization formula.

If we consider the possible combinations of all constraints (each constraint
can have two choices of Boolean values 0 and 1, which respectively represent
the existence of the class constraint and the absence of the class constraint),
then we can have a total of 25 rules. Each rule should be designed according to
expert experience. Through reference, design, analysis, and selection, we propose
four main rules that can represent the main features of 25 rules, which basically
guarantees the performance of the flocking behavior of the robot cluster.

ΔvC−flocking
i =

⎧
⎪⎪⎨

⎪⎪⎩

Δvali
i + Δvatt

i + Δvtar
i , if zorrep = ∅ ∩ zorobs = ∅

Δvobs
i , if zorrep = ∅ ∩ zorobs �= ∅

Δvrep
i + Δvobs

i , if zorrep �= ∅ ∩ zorobs �= ∅
Δvrep

i , if zorrep �= ∅ ∩ zorobs = ∅
. (8)

Tunning C-flocking model above means that we optimize the weight coef-
ficient in the velocity Eq. (9). It is obvious that the parameter space is 20-
dimensional, so manual adjustment of parameters will become very time-
consuming.



O-Flocking on Autonomous Navigation for Robotic Swarm 633

2.2 The Genetic Algorithm for Model Evolution

Therefore, we propose genetic-flocking algorithm (GF) as the method for param-
eter tuning of flocking model. The specific operation is shown in Fig. 3:

Fig. 3. GA process and its application on flocking model

1) Coding: The coding in this paper is based on natural number coding.
Each chromosome has 20 DNA bits representing 20 parameters that require
Parameter Tuning. The natural number coding is used for each DNA bit. The
values are 0.1, 0.2, 0.3,.... 1. The specific encoding method is shown in the
following figure:
2) Population Initialization: The method of population initialization
adopts complete initialization. For each DNA bit in a chromosome, a value
of 0.1 to 0.9 is generated and assigned to the chromosome referring to the
C-flocking .
3) Cross-operation: This operation randomly selects two chromosomes in
the population and randomly selects an equal length DNA segment on the
two chromosomes for the exchange operation. The specific operation is as
follows:
4) Mutation operation: Random mutation strategy is used in mutation
operation. The strategy first chooses a random DNA site in a chromosome
and randomly changes the value of the DNA site to another value. The value
ranges from 0.1, 0.2, 0.3,... 1. The coefficient of variation was 0.5.
5) Selection Operations: Selection is performed in all the parents, offspring
and mutants of the generation, and the individuals with the best evaluation
results are selected to form the next generation’s father.

In the algorithm, the C-flocking’s rules Rexp are represented as:
{
R1

0, R
2
0,

R3
0, R

4
0

}
, and Ri

0 =
{
ai
0, b

i
0, c

i
0, d

i
0, e

i
0

}
, i = 1, 2, 3, 4.

The outputs of GF algorithm are also a set of optimized rules: Ropt ={
R1

opt, R
2
opt, R

3
opt, R

4
opt

}
, and Ri

opt =
{
ai

opt, b
i
opt, c

i
opt, d

i
opt, e

i
opt

}
, i = 1, 2, 3, 4.
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2.3 Fitness Function for Evaluation

In the GF algorithm, we propose fitness function, consisting of several evaluation
indexes, to select the model with the best performance.

Average time is defined as the average time taken since the beginning of
the navigation until the robotic swarm reaches the target area. Accordingly, we
compute the Average time

τ =

∑
j

(
T arrive

j − T start
j

)

N
, (9)

where T start
j is the time when the navigation is triggered, and T arrive

j is the time
when robotic agent j reaches the target area.

Death rate is described as the percentage of the robotic swarm being dead
during the process of the navigation from the start area to the target area.

rdeath =
Ndeath

Ntotal
, (10)

where Ndeath represents the number of the dead agent, and Ntotal represents the
number of the total agents in the robotic swarm.

The centroid formula is

rσ =
∑

mjrj

M
, (11)

but the “quality” (homogeneity) of each agent is certain. Considering that the
centroid is expressed by the average coordinate directly, then the average value
of the relative distance between each step’s all points and the“centroid” is cal-
culated, the aggregation and stability are analyzed, and these data are recorded,
which can be used to analyze the changing rule of the two values in the whole
process. Since our time is discrete, we can use discrete output to the aggregation
formula of evolutionary algorithm:

γ̄ =

∑
t

∑
j

√(
px

j − rx
t

)2 +
(
py

j − ry
t

)2

NT
, (12)

where px
j and py

j are the abscissa and ordinate of the position of agent j, respec-
tively. rx

t and ry
t are the abscissa and ordinate of the position of the swarm’s

centroid at time t. T is the total time of the whole navigation process, while N
is the agent number of the whole swarm.

We define the Uniformity of the robotic swarm as the variance of the γt

sequence, which describes whether the flock structure of this swarm is stable.

s2γ =
∑T

t=0 (γt − γ̄)2

T
, (13)

γt =

∑
j

√(
px

j − rx
t

)2 +
(
py

j − ry
t

)2

N
. (14)
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We define anisotropic index to describe the variation of population velocity
direction. Specifically, it needs to calculate the average angle of each individual
velocity direction and flock velocity direction at a certain time, and then calculate
the average value of the whole process, which is the index of anisotropic index.
The variance of the average angle of the whole process represents the variation
range of anisotropic index, and the formula of anisotropy is as follows:

s2δ =

∑
t

∑
j

(
θt

j − δt
)2

NT
, (15)

δt =

∑
j

θj

N
. (16)

In order to evaluate performance of models comprehensively, we firstly nor-
malize the order parameters proposed above, and then define the global fitness
function by the transfer function F(x).

F (x) =
x − xmin

xmax − xmin
. (17)

With the following transfer function, we can construct a single objective
fitness function that considering all necessary requirements. This function F can
be used in the selection process of the GF algorithm.

F = F (τ) · F (γ̄) · F (s2γ) · F (s2δ). (18)

3 Experiment Analysis

To reveal the performance improvements of O-flocking, we compare it with C-
flocking from the aspect of the following six metrics in Table 1 including the
order parameters and fitness function proposed above:

Fitness function is the product of aggregation, anisotropy, average time, and
uniformity. As a comprehensive evaluation index, fitness function plays an impor-
tant role in our experiments. Besides, death rate is the basic constraint that must
be considered when optimizing weight parameters of velocity formula, and it is
also an evaluation index of the performance of each model. Experiments are per-
formed on the computer with i7 processor, 8g memory and independent graphics
card. The code for the related work has been put in [20]. The exact values of
key parameters in our platform are as follows:

To find the performances differences, we apply C-flocking and O-flocking
model in navigation experiment with three basic environmental elements includ-
ing tunnel obstacle, non-convex obstacle and convex obstacle. As shown in Fig. 4,
the C-flocking can complish the task basically, but they perform not good for
their uniformity and stability. Meanwhile, our O-flocking model performs obvi-
ously better.
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(a) C-flocking (20
robots)

(b) O-flocking (20
robots)

(c) C-flocking (60
robots)

(d) O-flocking (60
robots)

(e) C-flocking (100
robots)

(f) O-flocking (100
robots)

Fig. 4. C-flocking and O-flocking traces of the robotic swarm in autonomous navigation
in complex environment (We tested 3 groups of experiments using 20, 60 and 100
robotic agents for simulation.)

ΔvO−flocking
i =

⎧
⎪⎪⎨

⎪⎪⎩

Δvrep
i + 0.7Δvali

i + 0.3Δvatt
i + 7Δvobs

i + 0.4Δvtar
i , if zorrep = ∅ ∩ zorobs = ∅

0.8Δvrep
i + 0.4Δvali

i + 0.6Δvatt
i + 2Δvobs

i + 0.9Δvtar
i , if zorrep = ∅ ∩ zorobs �= ∅

0.1Δvrep
i + 0.9Δvali

i + 0.3Δvatt
i + Δvobs

i + 0.2Δvtar
i , if zorrep �= ∅ ∩ zorobs �= ∅

0.5Δvrep
i + 0.7Δvali

i + 0.4Δvatt
i + Δvobs

i + 0.8Δvtar
i , if zorrep �= ∅ ∩ zorobs = ∅

.

(19)
Equation (19) is the velocity updating formula of O-flocking. From analyzing the
meaning of the velocity formula of C-flocking and O-flocking, we can analyze the
following conclusions:

– Whether obstacles are detected or not, we need to ensure that the obstacle
avoidance coefficient in the formula keeps a larger value, which also proves
that the obstacle avoidance strategy plays an important role in the completion
of the whole task.

– In any case, it is important to ensure that all factors are taken into account
at the same time, which is reflected in the formula without taking zero as the
value of parameters.

– The parameters of the velocity formula are related to the order parameters
of the fitness function. The alignment, attraction and the target orientation
parameters (b, c, and e) are always kept at a higher value. Through analysis,
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it is found that this is related to the fitness function we set up. The time is
related to the target orientation coefficient. Also, the aggregation, anisotropy
and uniformity are all related to the alignment and attraction coefficients. We
set the threshold (0.2) of the swarm death rate as the constraints, which is
mainly related to obstacle avoidance parameters (d), so the repulsion param-
eters (a) has little influence on the whole system. So it seems that the reg-
ulations of a are contrary to common sense. For example, when there is an
individual in the repulsion area, the repulsion coefficient a is smaller.

Figure 4 shows directly that O-flocking performs better than C-flocking in
uniformity and stability. Figure 4(a) and Fig. 4(b) represent the performance of
these two model with 20 robotic agents, Fig. 4(c) and Fig. 4(d) with 60 robots,
Fig. 4(e) and Fig. 4(f) with 100 robots. Obviously, with the increasing quantity,
the performance of C-flocking is obviously getting worse and worse, while O-
flocking is getting better and better.

Table 1. Comparisons between C-flocking & O-flocking with 20, 60 and 100 robots

Evaluation F (γ̄) F (s2
δ) F (τ) F (s2

γ) F (rdeath) F

Algorithm C–f O–f C–f O–f C–f O–f C–f O–f C–f O–f C–f O–f

Num-20 0.85 0.47 38.69 5.31 130.05 84.50 0.29 0.01 0.35 0.00 6.11 0.01

Num-60 0.86 0.43 42.82 4.69 128.7 83.92 0.32 0.04 0.33 0.00 7.61 0.037

Num-100 1.17 0.46 50.15 4.99 115.80 84.25 0.21 0.03 2.74 0.00 92.82 0.03

Specific performance indicators are shown in Table 1. C–f represents the C-
flocking model, while O–f represents the O-flocking model. We record the values
of each evaluation index of the two models in three situations of the number
and scale of robots. Generally, all the indicators of O-flocking model perform
better (the smaller, the better). Specifically, aggregation of O-flocking is 56%
lower than that of C-flocking while the reduction of other indicators (anisotropy,
average time, uniformity, death rate, and fitness function) are 88.61%, 32.55%,
89.69%, 100%, and 99.92%, respectively.

Figure 5 shows the change of uniformity in the whole time step. The total time
step of each group of experiments is not the same, but it can be seen from the
figure that the data of each group of O-flocking are stable between 0 and 1, which
means that the stability and tightness of the cluster are very good during the
whole cruise. When C-flocking passes through obstacles, it can be seen that there
will be large fluctuations near step 31 and step 71. Such fluctuations represent
the situation of low cluster tightness and stability when cluster passes through
narrow and non-convex obstacles, and the formation is not well maintained. At
the same time, it can be seen that O-flocking has completed the whole task in
about 84 s, while C-flocking has not completed the whole task.
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Fig. 5. The uniformity of the robotic swarm with each experiment changes through time.

4 Conclusions and Future Work

We presented in this paper an optimized flocking model for robotic swarm in
autonomous navigation, that is O-flocking. This model is obtained through GF
framework proposed by us, which is the combination of the genetic algorithm
and robotic flocking model. This work comprehensively addresses the reliability,
adaptivity and scalability of the robotic swarm during completing the naviga-
tion tasks. Also, we provide a simple way of thinking for robot researchers or
users to solve problems. Only by building a simple model for a specific task and
environment and abstracting the speed formula of the robot, we can quickly
get a solution with superior performance. This greatly reduces the workload of
manual parameter adjustment and improves the efficiency of task completion.

Our future works are as follows: First, we will extend our experiment to
the real-world systems such as unmanned aerial systems and unmanned ground
systems. Second, we will take more uncertainties of sceneries into the model
to verify the correctness of our model, such as adding the moving obstacle, the
irregular barriers, and even fluid barriers. Third, we consider allowing the system
to evolve new rules on its own in an incomplete information environment, which
is more in line with the actual scenario.
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6. Nagy, M., Ákos, Z., Biro, D., Vicsek, T.: Hierarchical group dynamics in pigeon
flocks. Nature 464(7290), 890–893 (2010)

7. Feinerman, O., Pinkoviezky, I., Gelblum, A., Fonio, E., Gov, N.S.: The physics of
cooperative transport in groups of ants. Nat. Phys. 14(7), 683–693 (2018)

8. Cheung, K.J., Gabrielson, E., Werb, Z., et al.: Collective invasion in breast cancer
requires a conserved basal epithelial program. Cell 155(7), 1639–1651 (2013)

9. Husseini, T.: Gremlins are coming: DARPA enters Phase III of its UAV pro-
gramme (2018). https://www.army-technology.com/features/gremlins-darpa-uav-
programme/

10. Raytheon gets $29m for work on US Navy LOCUST UAV prototype. https://
navaltoday.com/2018/06/28/raytheon-wins-contract-for-locus-inp/

11. Eversham, J., Ruiz, V.F.: Parameter analysis of reynolds flocking model. In: 2010
IEEE 9th International Conference on Cybernetic Intelligent Systems. IEEE (2010)

12. Wang, J., Xin, M.: Flocking of multi-agent system using a unified optimal control
approach. J. Dyn. Syst. Meas. Control 135(6), 061005 (2013)

13. Li, J., Zhang, W., Su, H., Yang, Y.: Flocking of partially-informed multi-agent
systems avoiding obstacles with arbitrary shape. Auton. Agents Multi-Agent Syst.
29(5), 943–972 (2014). https://doi.org/10.1007/s10458-014-9272-2

14. Vrohidis, C., Vlantis, P., Bechlioulis, C.P., Kyriakopoulos, K.J.: Reconfigurable
multi-robot coordination with guaranteed convergence in obstacle cluttered envi-
ronments under local communication. Auton. Robots 42(4), 853–873 (2017).
https://doi.org/10.1007/s10514-017-9660-y

15. Ueyama, A., Isokawa, T., Nishimura, H., Matsui, N.: A comparison of grouping
behaviors on rule-based and learning-based multi-agent systems. In: Suzuki, Y.,
Hagiya, M. (eds.) Recent Advances in Natural Computing. MI, vol. 14, pp. 27–40.
Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55429-5 3

16. Morihiro, K., Matsui, N., Isokawa, T., Nishimura, H.: Reinforcement learning
scheme for grouping and characterization of multi-agent network. In: Setchi, R.,
Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS (LNAI), vol.
6278, pp. 592–601. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15393-8 66
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passáros em javascript, Github (2010). https://github.com/gpolo/birdflocking/
blob/master/doc/artigo.pdf

19. Braga, R.G., da Silva, R.C., Ramos, A.C.B., Mora-Camino, F.: Collision avoidance
based on reynolds rules: a case study using quadrotors. In: Latifi, S. (ed.) Informa-
tion Technology - New Generations. AISC, vol. 558, pp. 773–780. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-54978-1 96

20. https://github.com/Downloadmarktown/Flocking-experiment-platform

https://doi.org/10.1007/978-3-540-30301-5_41
https://doi.org/10.1007/978-3-540-30301-5_41
https://www.army-technology.com/features/gremlins-darpa-uav-programme/
https://www.army-technology.com/features/gremlins-darpa-uav-programme/
https://navaltoday.com/2018/06/28/raytheon-wins-contract-for-locus-inp/
https://navaltoday.com/2018/06/28/raytheon-wins-contract-for-locus-inp/
https://doi.org/10.1007/s10458-014-9272-2
https://doi.org/10.1007/s10514-017-9660-y
https://doi.org/10.1007/978-4-431-55429-5_3
https://doi.org/10.1007/978-3-642-15393-8_66
https://doi.org/10.1007/978-3-642-15393-8_66
https://github.com/gpolo/birdflocking/blob/master/doc/artigo.pdf
https://github.com/gpolo/birdflocking/blob/master/doc/artigo.pdf
https://doi.org/10.1007/978-3-319-54978-1_96
https://github.com/Downloadmarktown/Flocking-experiment-platform

	O-Flocking: Optimized Flocking Model on Autonomous Navigation for Robotic Swarm
	1 Introduction
	2 Genetic Optimization Framework for Flocking Model
	2.1 C-Flocking Model for Robotic Swarm
	2.2 The Genetic Algorithm for Model Evolution
	2.3 Fitness Function for Evaluation

	3 Experiment Analysis
	4 Conclusions and Future Work
	References




