Abstract
We propose a new rank metric code-based signature scheme constructed via the Schnorr approach. Our scheme is designed in a way to avoid leakage of the information on the support for the secret key used in the signature generation. We define some new problems in rank metric code-based cryptography: the Rank Support Basis Decomposition problem and the Advanced Rank Support Basis Decomposition problem. We also discuss their hardness and solving complexity. Furthermore, we give a proof in the \(\mathsf{EUF}\text {-}\mathsf{CMA}\) security model, by reducing the security of our scheme to the Rank Syndrome Decoding problem, the Ideal LRPC Codes Indistinguishability problem and the Decisional Rank Support Basis Decomposition problem. We analyze the practical security for our scheme against the known attacks on rank metric signature schemes. Our scheme is efficient in terms of key size (5.33 KB) and of signature sizes (9.69 KB) at 128-bit classical security level.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aragon, N.: Durandal Implementation, Github, 10 May 2019. https://github.com/nicolas-aragon/Durandal
Aragon, N., et al.: Cryptanalysis of a rank-based signature with short public keys. Des. Codes Crypt. 88, 643–653 (2020)
Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank metric based signature scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 728–758. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_25
Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank parity check codes: new decoding algorithms and applications to cryptography. IEEE Trans. Inf. Theory 65(12), 7697–7717 (2019)
Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.-P.: A new algorithm for solving the rank syndrome decoding problem. In: IEEE International Symposium on Information Theory (ISIT 2018), pp. 2421–2425 (2018)
Aragon, N., Ruatta, O., Gaborit, P., Zémor, G., Hauteville, A.: RankSign - a signature proposal for the NIST’s call, Specification vision 1.0, 30 November 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
Bardet, M., et al.: An algebraic attack on rank metric code-based cryptosystems. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 64–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_3
Bardet, M., et al.: Algebraic attacks for solving the Rank Decoding and MinRank problems without Gröbner basis. CoRR abs/2002.08322 (2020)
Bellini, E., Caullery, F., Hasikos, A., Manzano, M., Mateu, V.: Code-based signature schemes from identification protocols in the rank metric. In: Camenisch, J., Papadimitratos, P. (eds.) CANS 2018. LNCS, vol. 11124, pp. 277–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00434-7_14
Bellini, E., Caullery, F., Gaborit, P., Manzano, M., Mateu, V.: Improved veron identification and signature schemes in the rank metric. In: IEEE International Symposium on Information Theory (ISIT 2019), pp. 1872–1876 (2019)
Berlekamp, E.E., McEliece, R., Tilborg, H.V.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)
Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_6
Bernstein, D.J., Hülsing, A., Lange, T., Panny, L.: Comments on RaCoSS, a submission to NIST’s PQC competition, 23 December 2017. https://helaas.org/racoss/
Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding problem for rank distance codes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034862
Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trapdoor one-way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_2
Debris-Alazard, T., Tillich, J.-P.: Two attacks on rank metric code-based schemes: RankSign and an IBE scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 62–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_3
Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_16
Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)
Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)
Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)
Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_4
Hastad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Horlemann-Trautmann, A., Marshall, K., Rosenthal, J.: Extension of overbeck’s attack for gabidulin based cryptosystems. Des. Codes Crypt. 86(2), 319–340 (2018)
Lau, T.S.C., Tan, C.H., Prabowo, T.F.: Key recovery attacks on some rank metric code-based signatures. In: Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 215–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35199-1_11
Lee, W., Kim, Y.S., Lee, Y.W., No, J.S.: Post quantum signature scheme based on modified Reed-Muller code (pqsigRM), Specification vision 1.0, 30 November 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. In: Yet Another Conference on Cryptography (YACC 2006), pp. 142–152 (2006)
Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35
Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Prob. Inf. Transm. 38(3), 237–246 (2002)
Roy, P.S., Xu, R., Fukushima, K., Kiyomoto, S., Morozov, K., Takagi, T.: Random code-based signature scheme, Specification vision 1.0, 29 November 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22
Song, Y., Huang, X., Mu, Y., Wu, W.: A New Code-based Signature Scheme with Shorter Public Key. Cryptology ePrint Archive: Report 2019/053. https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053&version=20190125:204017&file=053.pdf
Tan, C.H., Prabowo, T.F., Lau, T.S.C.: Rank metric code-based signature. In: IEEE International Symposium on Information Theory and Its Application (ISITA 2018), pp. 70–74 (2018)
Acknowledgement
We are grateful to the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions which have greatly improved this manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix A Rank Support Recovery Algorithm
Appendix A Rank Support Recovery Algorithm
Let \(f=(f_1,\ldots ,f_d) \in E_{m,d,d}\), \(e=(e_1,\ldots ,e_r) \in E_{m,r,r}\) and \(\textit{\textbf{s}}=(s_1,\ldots ,s_n) \in \mathbb {F}_{q^m}^n\) such that \(S:=\langle s_1,\ldots ,s_n \rangle = \langle f_1 e_1,\ldots ,f_d e_r \rangle \). Given \(\textit{\textbf{f}}\), \(\textit{\textbf{s}}\) and r as input, the Rank Support Recovery Algorithm will output a vector space E which satisfies \(E = \langle e_1,\ldots ,e_r \rangle \). Denote \(S_i := f_i^{-1}.S\) and \(S_{ i,j} := S_i \cap S_j\).

Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lau, T.S.C., Tan, C.H. (2020). MURAVE: A New Rank Code-Based Signature with MUltiple RAnk VErification. In: Baldi, M., Persichetti, E., Santini, P. (eds) Code-Based Cryptography. CBCrypto 2020. Lecture Notes in Computer Science(), vol 12087. Springer, Cham. https://doi.org/10.1007/978-3-030-54074-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-54074-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-54073-9
Online ISBN: 978-3-030-54074-6
eBook Packages: Computer ScienceComputer Science (R0)