Skip to main content

Technique of System Operator Determination Based on Acoustic Emission Method

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2020)

Abstract

The results of computer quantum-chemical modeling of the operator structure of the process of occurrence of acoustic emission signals under load are presented. The regularities of changes in the oscillatory properties of acoustic emission signals with force field parameters are established. The existence of a correspondence between changes in spectral characteristics and the moments of occurrence of acoustic emission signals is proved. Using the GaussView program with the Hartree-Fock method in the 3-21G basis and graph theory, the parameters of the loaded anharmonic oscillator were calculated. Based on the studies, an algorithm for a multifactor model of information diagnostics of the mechanical properties of materials is proposed. A meaningful interpretation of the operator structure of dynamic processes and numerical methods for recovering information about the strength properties of materials from the characteristics of sources of initiation of acoustic emission signals is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akimov, A., Buketov, A., Sapronov, O., et al.: Development of polymer composites with improved thermophysical properties for shipbuilding and ship repair. Compos.: Mech. Comput. Appl.: Int. J. 10(2), 117–134 (2019). https://doi.org/10.1615/CompMechComputApplIntJ.2018026989

    Article  Google Scholar 

  2. Aleksenko, V., Sharko, A., et al.: Identication by ae method of structural features of deformation mechanisms at bending. Tech. Diagn. Nondestr. Test. 1, 32–39 (2019). https://doi.org/10.15407/tdnk2019.01.01

    Article  Google Scholar 

  3. Aleksenko, V., Sharko, A., Smetankin, S., et al.: Application of acoustic emission and strain gaugez measurements to processes of diagnostics of strain hardening of epoxy matrix composites. Tech. Diagn. Nondestr. Test. 3, 46–54 (2019). https://doi.org/10.15407/tdnk2019.03.07

    Article  Google Scholar 

  4. Babichev, S., Škvor, J., Fišer, J., Lytvynenko, V.: Technology of gene expression profiles filtering based on wavelet analysis. Int. J. Intell. Sys. Appl. 10(4), 1–7 (2018). https://doi.org/10.5815/ijisa.2018.04.01

    Article  Google Scholar 

  5. Bohmann, T., Schlamp, M., Ehrlich, I.: Acoustic emission of material damages in glass fibre-reinforced plastics. Compos. B: Eng. 155(15), 444–451 (2018). https://doi.org/10.1016/j.compositesb.2018.09.018

    Article  Google Scholar 

  6. Buketov, A., Sapronov, O., Brailo, M., et al.: Dynamics of destruction of epoxy composites filled with ultra-dispersed diamond under impact conditions. Mech. Adv. Mater. Struct. 27(9), 725–733 (2018). https://doi.org/10.1080/15376494.2018.1495788

    Article  Google Scholar 

  7. Carpinteri, A., Lacidogna, G., Pugno, N.: Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Eng. Fract. Mech. 74(1–2), 273–289 (2007). https://doi.org/10.1016/j.engfracmech.2006.01.036

    Article  Google Scholar 

  8. Cho, H., Shoji, N., Ito, H.: Acoustic emission generation behavior in a7075–t651 and a6061–t6 aluminum alloys with and without cathodic hydrogen charging under cyclic loading. J. Nondestr. Eval. 37(83), 83 (2018). https://doi.org/10.1007/s10921-018-0536-7

    Article  Google Scholar 

  9. Dickerson, R.E., Gray, H.B., Haight, G.P.: Chemical Principles, 3rd edn. The Benjamin/Cummings Publishing Company, Inc., Menlo Park (1979)

    Google Scholar 

  10. Gilyarov, V.: Angarmonicheskaya model frenkelya-kontorovoy dlya temperaturnoy soizmerimosti v kristallakh. FTT 29(4), 1055–1060 (1987)

    Google Scholar 

  11. Kushchenko, V., Khomitskyi, D.: Vibration monitoring of steel shaft headgears. Lect. Notes Civil Eng. 47, 227–234 (2020). https://doi.org/10.1016/j.measurement.2019.107320

    Article  Google Scholar 

  12. Liu, S., Li, X., Li, Z., et al.: Energy distribution and fractal characterization of acoustic emission (AE) during coal deformation and fracturing. Meas J. Int Meas Confederation 136, 122–131 (2019). https://doi.org/10.1016/j.measurement.2018.12.049

    Article  Google Scholar 

  13. Madarshahian, R., Ziehl, P., Caocedo, J.: Acoustic emission Bayesian source location: onset time challenge. Mech. Sys. Sig. Process. 123(15), 483–495 (2019). https://doi.org/10.1016/j.ymssp.2019.01.021

    Article  Google Scholar 

  14. Marasanov, V., Sharko, A., Stepanchikov, D.: Model of the operator dynamic process of acoustic emission occurrence while of materials deforming. Adv. Intell. Sys. Comput. 1020, 48–64 (2020). https://doi.org/10.1007/978-3-030-26474-1_4

    Article  Google Scholar 

  15. Nedoseka, A., Nedoseka, S., Markashova, L., Kushnareva, O.: On identification of structural changes in materials at fracture by acoustic emission data. Tech. Diagn. Nondestr. Test. 4, 9–13 (2016). https://doi.org/10.15407/tdnk2016.04.02

    Article  Google Scholar 

  16. Ognezneva, L., Kalinichenko, A.: Akusticheskiye metody kontrolya i diagnostiki. Chast’ II. Tomsk Polytechnic University, Tomsk (2009)

    Google Scholar 

  17. Pollock, A.: Acoustic emission inspection. Met. Handb. Ninth Ed. 17, 278–294 (1989)

    Google Scholar 

  18. Salita, D., Polyakov, V.: Application of principal components analysis to the investigation of acoustic emission in plastic deformation of lead alloys. Izvestiya Altai State Univ. 102(4), 26–30 (2018). https://doi.org/10.14258/izvasu(2018)4-04

    Article  Google Scholar 

  19. Surace, C., Bovsunovsky, A.: The use of frequency ratios to diagnose structural damage in varying environmental conditions. Mech. Syst. Signal Process. 136 (2020). Article no. 106523. https://doi.org/10.1016/j.ymssp.2019.106523

  20. Wang, K., Zhang, X., et al.: Application of improved leastsquare generative adversarial networks for rail crack detection by AE technique. Neurocomputing 332, 236–248 (2019). https://doi.org/10.1016/j.neucom.2018.12.057

    Article  Google Scholar 

  21. Zhao, X., Jia, M., Lin, M.: Deep Laplacian auto-encoder and its application into imbalanced fault diagnosis of rotating machinery measurement. J. Int. Meas. Confederation 152, 107320 (2020). https://doi.org/10.1016/j.measurement.2019.107320

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Stepanchikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marasanov, V., Stepanchikov, D., Sharko, A., Sharko, A. (2021). Technique of System Operator Determination Based on Acoustic Emission Method. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2020. Advances in Intelligent Systems and Computing, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-54215-3_1

Download citation

Publish with us

Policies and ethics