Skip to main content

Assessing Forest Fire Dynamicsin UAV-Based Tactical Monitoring System

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2020)

Abstract

This work presents a new method to assess the forest-fire parameters and fire front based on uncertain observations in a forest fire-fighting monitoring system, which jointly uses unmanned aerial vehicles and remote sensing. The proposed method is based on analyzing the consecutive image frames captured by optical and infrared cameras. The algorithm of the analysis of images obtained from different points of view simultaneously but separately by both types of cameras is described. Analysis of the optical images is divided into flame and smoke channels. It allows reducing the noise and eliminating cameras’ displacement effects in remote sensing images occurring due to vehicles’ vibrations. As the result of the analysis of images captured from different observation points, a semi-volumetric representation of the fire front can be evaluated, and various fire areas can be classified by intensity based on approximate flame height estimations. This result allows decision-makers to obtain the necessary information for decision-makers to correctly assess the dynamics of a forest fire. The proposed method has enough performance for assessing forest fires in real-time within the fire response decision support system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, M., Cruz, M.: Fireline intensity. In: Manzello, S. (ed.) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Springer (2018). https://doi.org/10.1007/978-3-319-51727-8_52-1

  2. Allison, R., Johnston, J., Craig, G., Jennings, S.: Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors 18(8), 1310 (2016). https://doi.org/10.3390/s16081310

    Article  Google Scholar 

  3. Ambrosia, V., Zajkowski, T.: Selection of appropriate class UAS/sensors to support fire monitoring: experiences in the united states. In: Handbook of Unmanned Aerial Vehicles. pp. 2723–2754. Springer, Netherlands (2015). https://doi.org/10.1007/978-90-481-9707-1_73

  4. Andrews, P.: The Rothermel surface fire spread model and associated developments: a comprehensive explanation. General Technical report RMRS-GTR-371. USDA Forest Service, Rocky Mountain Research Station, Fort Collins (2018)

    Google Scholar 

  5. Aydin, B., Selvi, E., Tao, J., Starek, M.: Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting. Drones 3(1), 17 (2019). https://doi.org/10.3390/drones3010017

    Article  Google Scholar 

  6. Behera, M., Roy, O.: Lidar remote sensing for forestry applications: the Indian context. Curr. Sci. 83(11), 1320–1328 (2002)

    Google Scholar 

  7. Bugaric, M., Jakovcevic, T., Stipanicev, D.: Computer vision based measurement of wildfire smoke dynamics. Adv. Electr. Comput. Eng. 15(1), 55–62 (2015). https://doi.org/10.4316/AECE.2015.01008

    Article  Google Scholar 

  8. Chen, T., Yin, Y., Huang, S., Ye, Y.: The smoke detection for early fire-alarming system base on video processing. In: Proceedings of 2006 International Conference on Intelligent Information Hiding and Multimedia, pp. 427–430. Pasadena (2006). https://doi.org/10.5555/1193214.1193962

  9. James, M.: Flame and smoke estimation for fire detection in videos based on optical flow and neural networks. J. Res. Eng. Technol. 3(8), 324–328 (2014). https://doi.org/10.15623/ijret.2014.0308050

    Article  Google Scholar 

  10. Kim, Y.J., Kim, E.G.: Image based fire detection using convolutional neural network. J. Korea Inst. Inf. Commun. Eng. 20, 1649–1656 (2016). https://doi.org/10.6109/jkiice.2016.20.9.1649

    Article  Google Scholar 

  11. Leblon, B., San-Miguel-Ayanz, J., Bourgeau-Chavez, L., Kong, M.: Remote sensing of wildfires. In: Land Surface Remote Sensing. pp. 55–95. Elsevier (2016). https://doi.org/10.1016/B978-1-78548-105-5.50003-7

  12. Luo, Y., Zhao, L., Liu, P., Huang, D.: Fire smoke detection algorithm based on motion characteristics and convolutional neural networks. Multimedia Tools Appl. 77(12), 15075–15092 (2018). https://doi.org/10.1007/s11042-017-5090-2

    Article  Google Scholar 

  13. Merino, L., Caballero, F., Martínez de Dios, J., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 6(1-4), 533–548 (2012). https://doi.org/10.1007/s10846-011-9560-x

  14. Merino, L., Martinez de Dios, J., Ollero, A.: Cooperative unmanned aerial systems for fire detection, monitoring, and extinguishing. In: Handbook of Unmanned Aerial Vehicles, pp. 2693–2722. Springer, Netherlands (2015). https://doi.org/10.1007/978-90-481-9707-1_74

  15. Mueller, M., Karasev, P., Kolesov, I., Tannenbaum, A.: Optical flow estimation for flame detection in videos. IEEE Trans. Image Process. 22(7), 2786–2797 (2013). https://doi.org/10.1109/TIP.2013.2258353

    Article  Google Scholar 

  16. Qiang, Y., Pei, B., Zhao, J.: Forest fire image intelligent recognition based on the neural network. J. Multimedia 9(3), 449–455 (2014). https://doi.org/10.4304/jmm.9.3.449-455

    Article  Google Scholar 

  17. Qin, H., Cui, J., Li, J., Bi, Y., Lan, M., Shan, M., Liu, W., Wang, K., Lin, F., Zhang, Y., Chen, B.: Design and implementation of an unmanned air vehicle for autonomous firefighting missions. In: Proceedings of the IEEE International Conference on Control and Automation, pp. 62–67. Kathmandu (2016). https://doi.org/10.1109/ICCA.2016.7505253

  18. Rossi, L., Molinier, T., Akhloufi, M., Tison, Y., Peri, A.: A 3D-vision system for the measurement of the rate of spread and the height of fire fronts. Meas. Sci. Technol. 21(10), 1–12 (2010). https://doi.org/10.1088/0957-0233/21/10/105501

    Article  Google Scholar 

  19. Shahbazi, M., Theau, J., Menard, P.: Recent applications of unmanned aerial imagery in natural resource management. GISci. Remote Sens. 51(4), 339–365 (2014). https://doi.org/10.1080/15481603.2014.926650

    Article  Google Scholar 

  20. Sharifi, F., Mirzaei, M., Zhang, Y., Gordon, B.: Cooperative multi-vehicle search and coverage problem in an uncertain environment. Unmanned Syst. 3(1), 35–47 (2015). https://doi.org/10.1109/CDC.2011.6161448

    Article  Google Scholar 

  21. Sherstjuk, V., Zharikova, M.: Fire-front recognition in UAV-based forest-fire monitoring system using fuzzy rough soft sets. In: Proceedings of 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp. 1091–1096. Lviv (2019). https://doi.org/10.1109/UKRCON.2019.8879829

  22. Sherstjuk, V., Zharikova, M., Sokol, I.: Forest fire-fighting monitoring system based on UAV team and remote sensing. In: Proceedings of 2018 IEEE 38th International Conference on Electronics and Nanotechnology, pp. 663–668, Kyiv (2018). https://doi.org/10.1109/ELNANO.2018.8477527

  23. Simoncelli, E.: Statistical modeling of photographic images. In: Handbook of Image and Video Processing, pp. 431–441. Academic Press (2005). https://doi.org/10.1016/B978-012119792-6/50089-9

  24. Tang, C., Wu, J., Hou, Y., Wang, P., Li, W.: A spectral and spatial approach of coarse-to-fine blurred image region detection. IEEE Signal Process. Lett. 23(11), 1652–1656 (2016). https://doi.org/10.1109/LSP.2016.2611608

    Article  Google Scholar 

  25. Wang, N.C., Ding, J.J., Chen, L.A., Chang, R.: Efficient image deblurring via block-wise non-blind deconvolution algorithm. In: Proceedings of 10th International Conference on Information, Communications and Signal Processing, pp. 1–5. Singapore (2015). https://doi.org/10.1109/ICICS.2015.7459884

  26. Yuan, C., Liu, Z., Zhang, Y.: Aerial images–based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles. J. Int. Robot. Syst. 88, 635–654 (2017). https://doi.org/10.1007/s10846-016-0464-7

    Article  Google Scholar 

  27. Yuan, C., Zhang, Y., Liu, Z.: A survey on technologies for automatic forest fire monitoring, detection and fighting using uavs and remote sensing techniques. Can. J. For. Res. 45(7), 783–792 (2015). https://doi.org/10.1139/cjfr-2014-0347

    Article  Google Scholar 

  28. Zhang, T., Li, Q., Zhang, C., Liang, H., Li, P., Wang, T., Li, S., Zhu, Y., Wu, C.: Current trends in the development of intelligent unmanned autonomous systems. Front. Inf. Technol. Electron. Eng. 18(1), 68–85 (2017). https://doi.org/10.1631/FITEE.1601650

    Article  Google Scholar 

  29. Zharikova, M., Sherstjuk, V.: Development of the model of natural emergencies in decision support system. East. Eur. J. Enterp. Technol. 4(1), 62–69 (2015). https://doi.org/10.15587/1729-4061.2015.37801

    Article  Google Scholar 

  30. Zharikova, M., Sherstjuk, V.: Threat assessment method for intelligent disaster decision support system. In: Advances in Intelligent Systems and Computing, vol. 512, pp. 81–99 (2016). https://doi.org/10.1007/978-3-319-45991-2_6

  31. Zharikova, M., Sherstjuk, V., Wójcik, W., Syzdykpayeva, A., Muslimov, K.: A model of destructive processes based on interval fuzzy rough soft set. Przeglad Elektrotechniczny 4, 132–137 (2019). https://doi.org/10.15199/48.2019.04.23847

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Sherstjuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sherstjuk, V., Zharikova, M., Dorovskaja, I., Sheketa, V. (2021). Assessing Forest Fire Dynamicsin UAV-Based Tactical Monitoring System. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2020. Advances in Intelligent Systems and Computing, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-54215-3_18

Download citation

Publish with us

Policies and ethics