Skip to main content

A Simulation Platform for Early Haptic Training in Surgical and Medical Education

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2019)

Abstract

Haptic training in simulation is a rising pedagogical trend in medical education. It is a rather new field that appeared partly because the adage “see one, do one, teach one”, from a mentoring standpoint, is undesirable due to public consideration for patient safety. Teaching strength management for a given procedure is a difficult task. This is not a skill one can retrieve from books or by only “seeing” the procedure. It needs to be experienced by the trainee. For this matter, haptic training on virtual patients offers a good opportunity to tackle this problem at the price of a constant trade-off between what technology can do and the expectation of realism. The technology is expensive, complex to maintain and very specific. Many simulators on the market use low-end devices to maintain the cost and are therefore unable to simulate proper interactions with the virtual patient. The platform presented here is an ecosystem which aims to study how to extend haptic simulations on a broader range of applications. We present an approach using innovative mechatronics, based on purely resistive force, to reach better haptic feedback at lower cost. The system is designed to be compact and safe. It allows strong and high resolution feedback as well as easy integration in existing devices. This technology will help to extend haptic simulations earlier in the curriculum where the resident requires basic hands-on experience.

Supported by ANR SimUSanté and EQUIPEX FIGURES - We thank Az-Eddine Djebara for the organization of the evaluation as well as Pr. Patrick Mertl, the Amiens orthopaedic unit and the Chimère research team.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouchigny, S., Mégard, C., Gosselin, F., Hoffmann, P., Korman, K.: Designing a VR training platform for surgeons: theoretical framework, technological solutions and results. In: Bergamasco, M., Bardy, B., Gopher, D., (eds.) Skill Training in Multimodal Virtual Environments, p. 199. Taylor and Francis, Bergamasco (2013)

    Google Scholar 

  2. Gosselin F., Ferlay F., Bouchigny S., Mégard C., Taha F.: Specification and design of a new haptic interface for maxillo facial surgery. In: IEEE International Conference on Robotics and Automation, Shanghai, pp. 737–744 (2011)

    Google Scholar 

  3. Gosselin, F., Bouchigny, S., Mégard, C., Taha, F., Delcampe, P., d’Hauthuille, C.: Haptic systems for training sensorimotor skills: a use case in surgery. Robot. Autonomous Syst. 61(4), 380–389 (2013)

    Article  Google Scholar 

  4. Wolf, B.R., Britton, C.L.: How orthopaedic residents perceive educational resources. Iowa Orthop. J. 33, 185–190 (2013)

    Google Scholar 

  5. Aggarwal, R., et al.: Training and simulation for patient safety. Qual. Saf. Health Care 19(Suppl 2), i34–43 (2010)

    Article  MathSciNet  Google Scholar 

  6. Gaba, D.M.: The future vision of simulation in health care. Qual. Saf. Health Care 13(Suppl 1), i2–10 (2004)

    Article  Google Scholar 

  7. Stirling, E.R.B., Lewis, T.L., Ferran, N.A.: Surgical skills simulation in trauma and orthopaedic training. J. Orthop. Surg. Res. 9, 126 (2014). https://doi.org/10.1186/s13018-014-0126-z

    Article  Google Scholar 

  8. Ruikar, D.D., Hegadi, R.S., Santosh, K.C.: A systematic review on orthopedic simulators for psycho-motor skill and surgical procedure training. J. Med. Syst. 42(9), 1–21 (2018). https://doi.org/10.1007/s10916-018-1019-1

    Article  Google Scholar 

  9. Popescu, D., Iacob, R., Laptoiu, D.: Virtual reality in orthopedic surgeons training. Key Eng. Mater. 638, 344–351 (2015)

    Article  Google Scholar 

  10. Lazennec, J., Laudet, C., Guérin-Surville, H., Roy-Camille, R., Saillant, G.: Dynamic anatomy of the acetabulum: an experimental approach and surgical implications. Surg. Radiol. Anat. 19(1), 23–30 (1997). https://doi.org/10.1007/BF01627730

    Article  Google Scholar 

  11. Grow, D.I., Wu, M., Locastro, M.J., Arora, S.K., Bastian, A.J., Okamura, A.M.: Haptic simulation of elbow joint spasticity. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Reno, NE, vol. 2008, pp. 475–476 (2008)

    Google Scholar 

  12. Gallagher, A.G., O’Sullivan, G.C.: Fundamentals of Surgical Simulation, p. 31. Springer, London (2012). https://doi.org/10.1007/978-0-85729-763-1

    Book  Google Scholar 

  13. Riener, R., Frey, M., Proll, T., Regenfelder, F., Burgkart, R.: Phantom-based multimodal interactions for medical education and training: the Munich knee joint simulator. IEEE Trans. Inf Technol. Biomed. 8(2), 208–216 (2004)

    Article  Google Scholar 

  14. Senkal, D., Gurocak, H.: Serpentine flux path for high torque MRF brakes in haptics applications. Mechatronics 20(3), 377–383 (2010)

    Article  Google Scholar 

  15. Cinq-Mars, M., Gurocak, H.: Pneumatic actuator with embedded MR-brake for haptics. In: IEEE World Haptics Conference (WHC), Munich, pp. 322–327 (2017)

    Google Scholar 

  16. Bulea, T.C., Kobetic, R., To, C.S., Audu, M.L., Schnellenberger, J.R., Triolo, R.J.: A variable impedance knee mechanism for controlled stance flexion during pathological Gait. IEEE/ASME Trans. Mechatron. 17(5), 822–832 (2012)

    Article  Google Scholar 

  17. Rossa, C., Lozada, J., Micaelli, A.: Design and control of a dual unidirectional brake hybrid actuation system for haptic devices. IEEE Trans. Haptics 7(4), 442–453 (2014)

    Article  Google Scholar 

  18. Rossa, C., Jaegy, A., Lozada, J., Micaelli, A.: Design considerations for magnetorheological brakes. IEEE/ASME Trans. Mechatron. 19(5), 1669–1680 (2014)

    Article  Google Scholar 

  19. Hafez, M., Lozada, J., ECK, L., Changeon, G.: Fluid haptic interface with improved haptic rendering using a torque or load sensor. Patent US9898032B2

    Google Scholar 

  20. Eck, L., Lozada, J., Changeon, G., Hafez, M.: lnterface haptique prenant en compte l’intention d’action de l’utilisateur”. Patent FR14 59187

    Google Scholar 

  21. Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Grisoni, L.: Sofa-an open source framework for medical simulation. In: MMVR 15-Medicine Meets Virtual Reality, vol. 125, pp. 13–18. IOP Press, February 2007

    Google Scholar 

  22. Robert, H., Nouveau, S., Gageot, S., Gagniere, B.: A new knee arthrometer, the GNRB®: experience in ACL complete and partial tears. Orthop. Traumatol. Surg. & Res. 95(3), 171–176 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Bouchigny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouchigny, S. et al. (2020). A Simulation Platform for Early Haptic Training in Surgical and Medical Education. In: McDaniel, T., Berretti, S., Curcio, I., Basu, A. (eds) Smart Multimedia. ICSM 2019. Lecture Notes in Computer Science(), vol 12015. Springer, Cham. https://doi.org/10.1007/978-3-030-54407-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54407-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54406-5

  • Online ISBN: 978-3-030-54407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics