Skip to main content

Tissue Discrimination Through Force-Feedback from Impedance Spectroscopy in Robot-Assisted Surgery

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12015))

Included in the following conference series:

Abstract

Haptic force feedback in teleoperated robot-assisted minimally invasive surgery is difficult to implement with traditional force sensors at the tool tip. A novel approach to displaying forces to the user is explored using electric impedance spectroscopy with an electrode embedded needle. To give substance to the proposed method, user trials were conducted to compare the accuracy of inserting needles by hand and through electric impedance based haptic teleoperation. The results of the experiment suggest that, when compared to the control scenario, novice operators could accurately locate the phantom tumour with a high degree of accuracy and repeatability using force feedback derived from electric impedance spectroscopy.

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), and the Social Sciences and Humanities Research Council of Canada (SSHRC), [funding reference number NFRFE-2018-01986]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), par les Instituts de recherche en santé du Canada (IRSC), et par le Conseil de recherches en sciences humaines du Canada (CRSH), [numéro de référence NFRFE-2018-01986].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, R.J., Mah, R.W.: The NASA smart probe project for real-time multiple microsensor tissue recognition. Stereotact. Funct. Neurosurg. 80(1–4), 114–119 (2003)

    Article  Google Scholar 

  2. Barsoukov, E., Macdonald, J.R.: Impedance Spectroscopy: Theory, Experiment, and Applications. Wiley, Hoboken (2018)

    Book  Google Scholar 

  3. Brown, B.H.: Electrical impedance tomography (EIT): a review. J. Med. Eng. Technol. 27(3), 97–108 (2003)

    Article  Google Scholar 

  4. Cole, K.: Dispersion and absorption in dielectrics. J. Chem. Phys 9, 341 (1941)

    Article  Google Scholar 

  5. Hall, T.J., Bilgen, M., Insana, M.F., Krouskop, T.A.: Phantom materials for elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997)

    Article  Google Scholar 

  6. Halter, R.J., Schned, A., Heaney, J., Hartov, A., Paulsen, K.D.: Electrical properties of prostatic tissues: I. Single frequency admittivity properties. J. Urol. 182(4), 1600–1607 (2009)

    Article  Google Scholar 

  7. Halter, R.J., Schned, A., Heaney, J., Hartov, A., Schutz, S., Paulsen, K.D.: Electrical impedance spectroscopy of benign and malignant prostatic tissues. J. Urol. 179(4), 1580–1586 (2008)

    Article  Google Scholar 

  8. Jossinet, J.: The impedivity of freshly excised human breast tissue. Physiol. Meas. 19(1), 61 (1998)

    Article  Google Scholar 

  9. Khadem, M., Rossa, C., Usmani, N., Sloboda, R.S., Tavakoli, M.: A two-body rigid/flexible model of needle steering dynamics in soft tissue. IEEE/ASME Trans. Mechatron. 21(5), 2352–2364 (2016)

    Article  Google Scholar 

  10. Krouskop, T., Wheeler, T., Kallel, F., Garra, B., Hall, T.: Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20(4), 260–274 (1998)

    Article  Google Scholar 

  11. Laufer, S., Ivorra, A., Reuter, V.E., Rubinsky, B., Solomon, S.B.: Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol. Meas. 31(7), 995 (2010)

    Article  Google Scholar 

  12. Lehmann, T., Rossa, C., Usmani, N., Sloboda, R.S., Tavakoli, M.: Intraoperative tissue young’s modulus identification during needle insertion using a laterally actuated needle. IEEE Trans. Instrum. Meas. 67(2), 371–381 (2017)

    Article  Google Scholar 

  13. Li, Q., Lee, G.Y., Ong, C.N., Lim, C.T.: AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374(4), 609–613 (2008)

    Article  Google Scholar 

  14. Markidou, A., Shih, W.Y., Shih, W.H.: Soft-materials elastic and shear moduli measurement using piezoelectric cantilevers. Rev. Sci. Instrum. 76(6), 064302 (2005)

    Article  Google Scholar 

  15. McAdams, E., Jossinet, J.: Tissue impedance: a historical overview. Physiol. Meas. 16(3A), A1 (1995)

    Article  Google Scholar 

  16. Min, M., Lehti-Polojärvi, M., Hyttinen, J., Rist, M., Land, R., Annus, P.: Bioimpedance spectro-tomography system using binary multifrequency excitation. Int. J. Bioelectromagnetism 209, 76–79 (2018). https://doi.org/10.18154/RWTH-CONV-224930

    Article  Google Scholar 

  17. Okamura, A.M.: Haptic feedback in robot-assisted minimally invasive surgery. Curr. Opin. Urol. 19(1), 102 (2009)

    Article  Google Scholar 

  18. Ottensmeyer, M.P., Salisbury, J.K.: In vivo data acquisition instrument for solid organ mechanical property measurement. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 975–982. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45468-3_116

    Chapter  Google Scholar 

  19. Park, J., Choi, W.M., Kim, K., Jeong, W.I., Seo, J.B., Park, I.: Biopsy needle integrated with electrical impedance sensing microelectrode array towards real-time needle guidance and tissue discrimination. Sci. rep. 8(1), 264 (2018)

    Article  Google Scholar 

  20. Rossa, C., Tavakoli, M.: Issues in closed-loop needle steering. Control Eng. Pract. 62, 55–69 (2017). https://doi.org/10.1016/j.conengprac.2017.03.004

    Article  Google Scholar 

  21. Yun, J., Hong, Y.T., Hong, K.H., Lee, J.H.: Ex vivo identification of thyroid cancer tissue using electrical impedance spectroscopy on a needle. Sens. Actuators, B Chem. 261, 537–544 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brayden Kent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kent, B., Cusipag, A., Rossa, C. (2020). Tissue Discrimination Through Force-Feedback from Impedance Spectroscopy in Robot-Assisted Surgery. In: McDaniel, T., Berretti, S., Curcio, I., Basu, A. (eds) Smart Multimedia. ICSM 2019. Lecture Notes in Computer Science(), vol 12015. Springer, Cham. https://doi.org/10.1007/978-3-030-54407-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54407-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54406-5

  • Online ISBN: 978-3-030-54407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics