Skip to main content

Certain and Consistent Domain Adaptation

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12015))

Included in the following conference series:

Abstract

Unsupervised domain adaptation algorithms seek to transfer knowledge from labeled source datasets in order to predict the labels for target datasets in the presence of domain-shift. In this paper we propose the Certain and Consistent Domain Adaptation (CCDA) model for unsupervised domain adaptation. The CCDA aligns the source and target domains using adversarial training and reduces the domain adaptation problem to a semi supervised learning (SSL) problem. We estimate the target labels using consistency regularization and entropy minimization on the domain-aligned target samples whose predictions are consistent across multiple stochastic perturbations. We evaluate the CCDA on benchmark datasets and demonstrate that it outperforms competitive baselines from domain adaptation literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2009). https://doi.org/10.1007/s10994-009-5152-4

    Article  MathSciNet  Google Scholar 

  2. Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 467–483. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_28

    Chapter  Google Scholar 

  3. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR, pp. 3722–3731 (2017)

    Google Scholar 

  4. Cao, Z., Ma, L., Long, M., Wang, J.: Partial adversarial domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 139–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_9

    Chapter  Google Scholar 

  5. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning (Chapelle, O. et al., eds.; 2006). IEEE Trans. Neural Networks 20(3), 542 (2009)

    Article  Google Scholar 

  6. Courty, N., Flamary, R., Habrard, A., Rakotomamonjy, A.: Joint distribution optimal transportation for domain adaptation. In: NeurIPS, pp. 3730–3739 (2017)

    Google Scholar 

  7. Csurka, G.: A comprehensive survey on domain adaptation for visual applications. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. Advances in Computer Vision and Pattern Recognition, pp. 1–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_1

    Chapter  Google Scholar 

  8. Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: The IEEE Conference on CVPR, June 2018

    Google Scholar 

  9. French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adaptation. arXiv preprint arXiv:1706.05208 (2017)

  10. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    Google Scholar 

  11. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015)

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in NeurIPS, pp. 2672–2680 (2014)

    Google Scholar 

  13. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in NeurIPS, pp. 529–536 (2005)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on CVPR, pp. 770–778 (2016)

    Google Scholar 

  15. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: Proceedings of the 35th ICML, vol. 80, pp. 1989–1998 (2018)

    Google Scholar 

  16. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  17. Li, Y., Liu, L., Tan, R.T.: Certainty-driven consistency loss for semi-supervised learning. arXiv preprint arXiv:1901.05657 (2019)

  18. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)

  19. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Domain adaptation with randomized multilinear adversarial networks. CoRR abs/1705.10667 (2017)

    Google Scholar 

  20. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in NeurIPS, pp. 136–144 (2016)

    Google Scholar 

  21. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML-Volume 70, pp. 2208–2217 (2017)

    Google Scholar 

  22. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)

    Google Scholar 

  23. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. CoRR abs/1809.02176 (2018). http://arxiv.org/abs/1809.02176

  24. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  25. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 156–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_10

    Chapter  Google Scholar 

  26. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence 2018, pp. 4058–4065 (2018)

    Google Scholar 

  27. Shu, R., Bui, H.H., Narui, H., Ermon, S.: A DIRT-T approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735 (2018)

  28. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Sugiyama, M., Krauledat, M., MÞller, K.R.: Covariate shift adaptation by importance weighted cross validation. JMLR 8, 985–1005 (2007)

    MATH  Google Scholar 

  30. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in NeurIPS, pp. 1195–1204 (2017)

    Google Scholar 

  31. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE ICCV, pp. 4068–4076 (2015)

    Google Scholar 

  32. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: IEEE CVPR, pp. 7167–7176 (2017)

    Google Scholar 

  33. Venkateswara, H., Chakraborty, S., Panchanathan, S.: Deep-learning systems for domain adaptation in computer vision: learning transferable feature representations. IEEE Signal Process. Mag. 34(6), 117–129 (2017)

    Article  Google Scholar 

  34. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR, pp. 5018–5027 (2017)

    Google Scholar 

  35. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  36. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.: Universal domain adaptation. In: The IEEE Conference on CVPR, June 2019

    Google Scholar 

  37. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

Download references

Acknowledgements

The authors thank ASU, and the National Science Foundation for their funding support. This material is partially based upon work supported by the National Science Foundation under Grant No. 1828010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhadrinath Nagabandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagabandi, B., Dudley, A., Venkateswara, H., Panchanathan, S. (2020). Certain and Consistent Domain Adaptation. In: McDaniel, T., Berretti, S., Curcio, I., Basu, A. (eds) Smart Multimedia. ICSM 2019. Lecture Notes in Computer Science(), vol 12015. Springer, Cham. https://doi.org/10.1007/978-3-030-54407-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54407-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54406-5

  • Online ISBN: 978-3-030-54407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics