Skip to main content

Race Classification Based Iris Image Segmentation

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2019)

Abstract

Iris segmentation is an essential precondition for biometric authentication systems based on iris recognition and dramatically affects the accuracy of personal identification. Due to various noises during iris acquisition, iris images from different databases exhibit different texture characteristics. Existing works mostly design segmentation schemes for specific iris images and thus restrain much room for performance improvement. Therefore, this paper proposes a race classification based iris image segmentation method. Compared with conventional methods, the proposed method firstly exploits the merits of local Gabor binary pattern (LGBP) with support vector machine (SVM) and builds an efficient classifier, LGBP-SVM, to partition iris images into the human eye and non-human eye images. Following this, these two kinds of iris images are segmented by different strategies based on circular Hough transform with the active contour model. Extensive experiments demonstrate the proposed LGBP-SVM outperforms existing works in terms of accuracy of iris race classification. Furthermore, the race classification based iris segmentation method improves the segmentation accuracy and correct segmentation rates for various iris image databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, Z., Tan, T.: Ordinal measures for Iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2211–2226 (2009)

    Article  Google Scholar 

  2. Zhao, Z., Kumar, A.: A deep learning based unified framework to detect, segment and recognize irises using spatially corresponding features. Pattern Recognit. 93, 546–557 (2019)

    Article  Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Arsalan, M., Naqvi, R.A., Kim, D.S., Nguyen, P.H., Owais, M., Park, K.R.: IrisDenseNet: robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors. Sensors 18(5), 1501 (2018)

    Article  Google Scholar 

  5. Daugman, J.: How iris recognition works. In: The Essential Guide to Image Processing, 2nd edn. Academic Press, pp. 715–739 (2009)

    Google Scholar 

  6. Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)

    Article  Google Scholar 

  7. Masek, L.: Recognition of human iris patterns for biometric identification. Master’s thesis, The University of Western Australia, Perth (2003)

    Google Scholar 

  8. Arvacheh, E.M., Tizhoosh, H.R.: Iris segmentation: detecting pupil, limbus and eyelids. In: 2006 International Conference on Image Processing, pp. 2453–2456. IEEE, Atlanta, GA (2006)

    Google Scholar 

  9. Koh, J., Govindaraju, V., Chaudhary, V.: A robust iris localization method using an active contour model and hough transform. In: 20th International Conference on Pattern Recognition, pp. 2852–2856. IEEE, Istanbul (2010)

    Google Scholar 

  10. Chen, R., Lin, X.R., Ding, T.H.: Iris segmentation for non-cooperative recognition systems. IET Image Process. 5(5), 448–456 (2011)

    Article  Google Scholar 

  11. Radman, A., Jumari, K., Zainal, N.: Fast and reliable iris segmentation algorithm. IET Image Process. 7(1), 42–49 (2013)

    Article  Google Scholar 

  12. An, L., Yan, Y., Wang, Q.: Heterogeneous iris segmentation based on active contour model and prior noise characteristics. In: International Conference on Internet Multimedia Computing and Service, pp. 298–301. ACM, Xi’an (2016)

    Google Scholar 

  13. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, vol. 1, pp. 786–791. IEEE, Beijing (2005)

    Google Scholar 

  14. Ma, B., Zhang, W., Shan, S.: Robust head pose estimation using LGBP. In: 18th International Conference on Pattern Recognition, pp. 512–515. IEEE, Hong Kong (2006)

    Google Scholar 

  15. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  16. CASIA Iris Image Database. http://biometrics.idealtest.org/findTotalDbByMode.do?mode=Iris

  17. Iris Database. http://phoenix.inf.upol.cz/iris/

  18. Sun, Z., Zhang, H., Tan, T., Wang, J.: Iris image classification based on hierarchical visual codebook. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1120–1123 (2014)

    Article  Google Scholar 

  19. An, L., Gao, X., Li, X., Tao, D., Deng, C., Li, J.: Robust reversible watermarking via clustering and enhanced pixel-wise masking. IEEE Trans.Image Process. 21(8), 3598–3611 (2012)

    Article  MathSciNet  Google Scholar 

  20. Gao, X., An, L., Yuan, Y., Tao, D., Li, X.: Lossless data embedding using generalized statistical quantity histogram. IEEE Trans. Circ. Syst. Video Technol. 21(8), 1061–1070 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Key Program of NSFC-Tongyong Union Foundation (Grant No. U1636209), the National Natural Science Foundation of China (Grant No. 61902292), the Key Research and Development Programs of Shaanxi (Grant Nos. 2019ZDLGY13-07 and 2019ZDLGY13-04), and the Science and Technology Projects of Xi’an, China (Grant No. 201809170CX11JC12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ke, X., An, L., Pei, Q., Wang, X. (2020). Race Classification Based Iris Image Segmentation. In: McDaniel, T., Berretti, S., Curcio, I., Basu, A. (eds) Smart Multimedia. ICSM 2019. Lecture Notes in Computer Science(), vol 12015. Springer, Cham. https://doi.org/10.1007/978-3-030-54407-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54407-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54406-5

  • Online ISBN: 978-3-030-54407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics