Skip to main content

Local Gathering of Mobile Robots in Three Dimensions

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2020)

Abstract

In this work, we initiate the research about the Gathering problem for robots with limited viewing range in the three-dimensional Euclidean space. In the Gathering problem, a set of initially scattered robots is required to gather at the same position. The robots’ capabilities are very restricted – they do not agree on any coordinate system or compass, have a limited viewing range, have no memory of the past and cannot communicate.

We study the problem in two different time models, in \(\mathcal {F}{\textsc {sync}}\) (fully synchronized discrete rounds) and the continuous time model. For \(\mathcal {F}{\textsc {sync}}\), we introduce the 3d-Go-To-The-Center-strategy and prove a runtime of \(\varTheta \left( n^2\right) \) that matches the currently best runtime bound for the same model in the Euclidean plane [SPAA’11] .

Our main result is the generalization of contracting strategies (continuous time model) from [Algosensors’17] to the three-dimensional case. In contracting strategies, every robot that is located on the global convex hull of all robots’ positions moves with full speed towards the inside of the convex hull. We prove a runtime bound of \(\mathcal {O}\left( \varDelta \cdot n^{3/2}\right) \) for any three-dimensional contracting strategy, where \(\varDelta \) denotes the diameter of the initial configuration. This comes up to a factor of \(\sqrt{n}\) close to the lower bound of \(\varOmega \left( \varDelta \cdot n\right) \) which is already true in two dimensions.

In general, it might be hard for robots with limited viewing range to decide whether they are located on the global convex hull and which movement maintains the connectivity of the swarm, rendering the design of concrete contracting strategies a challenging task. We prove that the continuous variant of 3d-Go-To-The-Center is contracting and keeps the swarm connected. Moreover, we give a simple design criterion for three-dimensional contracting strategies that maintains the connectivity of the swarm and introduce an exemplary strategy based on this criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ando, H., Suzuki, Y., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proceedings of the 1995 IEEE International Symposium on Intelligent Control, ISIC 1995, pp. 453–460. IEEE, August 1995. https://doi.org/10.1109/ISIC.1995.525098

  2. Bhagat, S., Chaudhuri, S.G., Mukhopadhyaya, K.: Gathering of opaque robots in 3D space. In: Proceedings of the 19th International Conference on Distributed Computing and Networking, ICDCN 2018, Varanasi, India, 4–7 January 2018, pp. 2:1–2:10 (2018). https://doi.org/10.1145/3154273.3154322

  3. Braun, M., Castenow, J., Meyer auf der Heide, F.: Local gathering of mobile robots in three dimensions (2020). https://arxiv.org/abs/2005.07495

  4. Degener, B., Kempkes, B., Kling, P., Meyer auf der Heide, F.: Linear and competitive strategies for continuous robot formation problems. TOPC 2(1), 2:1–2:18 (2015). https://doi.org/10.1145/2742341

  5. Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Rajaraman, R., Meyer auf der Heide, F. (eds.) SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, 4–6 June 2011 (Co-located with FCRC 2011), pp. 139–148. ACM (2011). https://doi.org/10.1145/1989493.1989515

  6. Elzinga, D.J., Hearn, D.W.: The minimum covering sphere problem. Manage. Sci. 19(1), 96–104 (1972). https://doi.org/10.1287/mnsc.19.1.96

    Article  MathSciNet  MATH  Google Scholar 

  7. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities, Current Research in Moving and Computing. Lecture Notes in Computer Science, vol. 11340. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-11072-7

    Book  Google Scholar 

  8. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts with limited sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 142–153. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28646-2_13

    Chapter  Google Scholar 

  9. Kling, P., Meyer auf der Heide, F.: Continuous protocols for swarm robotics. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing. LNCS, vol. 11340, pp. 317–334. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_13

    Chapter  Google Scholar 

  10. Li, S., Markarian, C., Meyer auf der Heide, F., Podlipyan, P.: A continuous strategy for collisionless gathering. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 182–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_14

    Chapter  MATH  Google Scholar 

  11. Li, S., Meyer auf der Heide, F., Podlipyan, P.: The impact of the gabriel subgraph of the visibility graph on the gathering of mobile autonomous robots. In: Chrobak, M., Fernández Anta, A., Gąsieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp. 62–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53058-1_5

    Chapter  Google Scholar 

  12. Poudel, P., Sharma, G.: Universally optimal gathering under limited visibility. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 323–340. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_23

    Chapter  Google Scholar 

  13. Tomita, Y., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots without chirality. In: 21st International Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, 18–20 December 2017, pp. 13:1–13:17 (2017). https://doi.org/10.4230/LIPIcs.OPODIS.2017.13

  14. Yamauchi, Y., Uehara, T., Yamashita, M.: Brief announcement: Pattern formation problem for synchronous mobile robots in the three dimensional euclidean space. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 447–449 (2016). https://doi.org/10.1145/2933057.2933063

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannik Castenow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, M., Castenow, J., Meyer auf der Heide, F. (2020). Local Gathering of Mobile Robots in Three Dimensions. In: Richa, A., Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2020. Lecture Notes in Computer Science(), vol 12156. Springer, Cham. https://doi.org/10.1007/978-3-030-54921-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54921-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54920-6

  • Online ISBN: 978-3-030-54921-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics