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Abstract

In this work, we initiate the research about the Gathering problem for robots with limited
viewing range in the three-dimensional Euclidean space. In the Gathering problem, a set of
initially scattered robots is required to gather at the same position. The robots’ capabilities are
very restricted – they do not agree on any coordinate system or compass, have a limited viewing
range, have no memory of the past and cannot communicate.

We study the problem in two different time models, in Fsync (fully synchronized discrete
rounds) and the continuous time model. For Fsync, we introduce the 3d-Go-To-The-Center-
strategy and prove a runtime of Θ

(
n2
)

that matches the currently best runtime bound for the
same model in the Euclidean plane [SPAA’11] .

Our main result is the generalization of contracting strategies (continuous time model) from
[Algosensors’17] to the three-dimensional case. In contracting strategies, every robot that is
located on the global convex hull of all robots’ positions moves with full speed towards the
inside of the convex hull. We prove a runtime bound of O

(
∆ · n3/2

)
for any three-dimensional

contracting strategy, where ∆ denotes the diameter of the initial configuration. This comes up
to a factor of

√
n close to the lower bound of Ω (∆ · n) which is already true in two dimensions.

In general, it might be hard for robots with limited viewing range to decide whether they are
located on the global convex hull and which movement maintains the connectivity of the swarm,
rendering the design of concrete contracting strategies a challenging task. We prove that the
continuous variant of 3d-Go-To-The-Center is contracting and keeps the swarm connected.
Moreover, we give a simple design criterion for three-dimensional contracting strategies that
maintains the connectivity of the swarm and introduce an exemplary strategy based on this
criterion.

1 Introduction

We study a scenario where a distributed system of mobile entities (called robots) is supposed to
establish a certain formation, also denoted as a pattern. The robots are scattered in a d-dimensional
Euclidean space (usually the Euclidean plane) and have to coordinate their movements in a dis-
tributed manner to reach the desired formation. The robots’ capabilities depend on the exact model
and formation problem but are typically very restricted. Usually, the robots do not agree on a com-
mon coordinate system or compass, cannot communicate with each other and have only limited

∗This paper is a full version of the respective paper presented at SIROCCO 2020.
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sensing capabilities. One extensively studied coordination problem is the Pattern Formation
problem, dealing with questions such as: Which patterns are generally formable by a set of robots?
Which capabilities do the robots need? Given a specific pattern, for which initial configurations
is this pattern formable? Interestingly, it has been proven that there are only two patterns that
might be formable starting in an arbitrary input configuration. These are the patterns Point and
Uniform Circle. Forming the pattern Point is known under a more common name – the Gath-
ering problem, which studies the task of gathering a set of robots on the same position. Both
of these problems have been extensively studied under several different assumptions, involving the
viewing range (local or global), the synchronization (synchronous or asynchronous activation), the
extent (robots can or cannot occupy the same position) or the opacity of robots, to name only a
few. However, most of these models have in common that the robots operate in the two-dimensional
Euclidean plane. A natural extension would be to consider the three-dimensional Euclidean space,
where the robots have the ability to fly, such as drones, or to move underwater. Existing results
about robots in the three-dimensional Euclidean space are very scarce, rely on strong assumptions
(such as axis agreement) and do not consider any runtime analyses of the proposed strategies. Our
work initiates the study of Gathering of robots in three-dimensions, in one of the weakest possible
models – robots do not agree on any coordinate system or compass, are oblivious (have no memory
of the past) and have only a local view.

1.1 Model & Time Notions

We consider a set R of n robots r1, . . . , rn, each of which occupies a single point in R3 at each time.
As such, robots can neither block each other’s views nor paths, and multiple robots are allowed to
occupy the same position at the same time. The position of robot ri at time t is denoted by pi(t).
The positions of all robots at time t, Pt =

(
p1(t), . . . , pn(t)

)
are collectively called the configuration

at time t. The Euclidean distance between points x, y ∈ R3 is denoted as d(x, y). For a subset of
the three-dimensional Euclidean space P ⊆ R3, d(x,P) is used as a shorthand for miny∈P d(x, y).

The overall abilities of the robots are rather limited: They are not allowed to communicate with
each other, they are identical (they cannot be distinguished) and are oblivious, meaning they have
no memory of the past. Furthermore they do not share a common coordinate system or orientation.
Robots are only able to observe the space around them within a limited viewing range of 1, i.e. a
robot ri can see the position of another robot rj if and only if d(pi(t), pj(t)) ≤ 1. Two robots ri and
rj with d(pi(t), pj(t)) ≤ 1 are also called neighbors. The set of all neighbors of ri at time t is called
the neighborhood of ri and is denoted as Ri(t). This limited viewing range can also be considered
to induce a unit ball graph UBGt = (R, Et) at time t, whose nodes consist of the robots and where
the set of edges Et contains an edge {ri, rj} if and only if d(pi(t), pj(t)) ≤ 1. This graph is also
called the visibility graph at time t. Note that the UBG is a generalization of the two-dimensional
unit disk graph (UDG) to three dimensions.

Starting from a configuration of n robots in the three-dimensional Euclidean space that is
connected at time 0, i.e. UBG0 is connected, the goal is to gather all robots in one point. This
problem will be referred to as the (three-dimensional) Gathering problem. Note that the eventual
gathering point is not predefined and can instead be chosen by the robots at runtime. This also
imposes a subgoal during the execution of any algorithm that solves this problem: It has to be
ensured that UBGt remains connected. Otherwise, the limited viewing range of the robots, combined
with the fact that they do not share coordinate systems, makes it impossible for any deterministic
algorithm to restore connectivity and the robots can no longer converge to the same point [1].

Througout this work, we consider two different notions of time: The fully synchronous Fsync
model and the continuous time model.
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Fsync: In Fsync, all robots operate in fully synchronous Look-Compute-Move (LCM) cycles. In
the Look phase, a robot ri observes its environment, detects the set of all visible robots Ri(t) and
stores a snapshot in its local memory. Based on this snapshot, ri computes a target point in the
Compute phase. Finally, in the Move phase, ri moves to that target point. The execution of a single
LCM cycle is also denoted as one round.

Continuous Time Model: Generally, the continuous time model can be seen as a continuous
variant of Fsync, in which robots only move an infinitesimal small distance towards their target
points [7]. At every point in time, the movement of each robot ri can be expressed by a velocity
vector ~vi(t) with 0 ≤ ‖~vi(t)‖ ≤ 1, i.e. the maximal speed of a robot is bounded by 1. In contrast
to Fsync, the function pi : R>0 → R3, representing the position of ri at time t, is a continuous
function and also called the trajectory of ri. Although the trajectories are continuous, they are
not necessarily differentiable because robots are able to change their speed and direction non-
continuously. However, natural movement strategies have (right) differentiable trajectories. Thus,
the velocity vector of a robot ~vi : R>0 → R3 can be seen as the (right) derivative of pi.

1.2 Our Contribution

The contribution of this paper is twofold. We consider the fully synchronous Fsync model and
the continuous time model. For Fsync, we introduce the strategy 3d-Go-To-The-Center (3d-
GTC), which is the three-dimensional generalization of Go-To-The-Center (GTC), invented for
robots operating in the Euclidean plane [1]. The main idea of 3d-GTC is that robots move towards
the center of the smallest enclosing sphere of all robots within their viewing radius, while ensuring
that the configuration stays connected. We prove a runtime bound of Θ

(
n2
)

for 3d-GTC which
matches the runtime of the two-dimensional GTC strategy.

For the continuous time model, we generalize the class of contracting strategies [9] to three
dimensions. In contracting strategies, every robot that lies on the convex hull of all robots’ positions
moves always with speed 1 into a direction that points inside or on the boundary of the convex
hull. We prove that every (three-dimensional) contracting gathering strategy gathers all robots on
a single point in time at most O

(
∆ · n3/2

)
, where ∆ denotes the (geometric) diameter of the initial

configuration, i.e. the maximum Euclidean distance between any pair of robots. This runtime
bound differs from the runtime bound for two-dimensional contracting strategies by a factor of

√
n.

The lower bound is Ω (∆ · n) and already holds for the two-dimensional case [9]. The main open
question is whether O

(
∆ · n3/2

)
is tight or can be improved to O (∆ · n).

Note that a contracting strategy is not necessarily local. Therefore, we finally present two local,
contracting strategies. Our first example is the continuous variant of 3d-GTC, called Cont-3d-
GTC. We prove that the strategy is contracting and thus gathers the robots in time O

(
∆ · n3/2

)
.

In addition, we present the class of tangential-normal strategies. These strategies are local and
maintain connectivity. As an example for a strategy that is both tangential-normal and contracting,
we introduce the Move-on-Angle-Minimizer strategy.

1.3 Related Work

In this overview over related work, we focus on the Gathering problem for synchronized robots
with local visibility in the Euclidean plane. Beyond that, we give a summary about research
concerning robot coordination problems in the three-dimensional Euclidean space. For other models
and coordination problems, which involve, among others, less synchronized schedulers or robots with
a global view, we refer the reader to the recent survey [6].
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Ando, Suzuki and Yamashita introduced the GTC-strategy for fully synchronous robots with
local view [1]. In GTC, every robot moves in every round towards the center of the smallest enclosing
circle of all robots within its viewing range while ensuring that the swarm remains connected. Ando
et al. could prove that GTC solves the Gathering-problem in finite time. Later on, Degener et al.
could prove a tight runtime bound of Θ

(
n2
)

for GTC [4]. By now, this is the best known runtime
bound for a strategy that solves Gathering of robots with local visibility and without agreement
on any coordinate system or compass in Fsync.

Faster runtimes could so far only be obtained under different assumptions – for example by
introducing one-axis agreement or changing the time model. Poudel and Sharma proved that it is
possible to gather a swarm of robots with local view in time O (∆), where ∆ denotes the diameter
of the initial configuration [11]. The main assumption for their strategy is that the robots agree on
one axis of their coordinate systems.

The second time model we consider in this paper is the continuous time model, introduced by
Gordon et al. [7]. In this time model robots do not operate in synchronized rounds but continuously
observe their environment and move while having a bounded maximal speed. Gordon et al. propose
a gathering strategy for the continuous time model. In their strategy, all robots that locally assume
that they are located on the global convex hull move with maximal speed along the bisector formed
by vectors to their neighbors along the global convex hull. This strategy has later been called
Move-On-Bisector by Degener et al. They could also prove runtime of Θ (n) [3].

The main result of this paper is based on a more general view on continuous Gathering
strategies in the Euclidean plane – the class of contracting strategies in which all robots that are
located on the global convex hull of all robots move with maximal speed into a direction that points
inside of the convex hull [9]. Li et al. could prove a runtime of O (∆ · n) for any contracting strategy.
Note that Move-On-Bisector is also a contracting strategy but has a significantly faster runtime
than O (∆ · n). However, there are contracting strategies with a runtime of Ω (∆ · n) [9].

In the three-dimensional Euclidean space there is so far, to the best of our knowledge, no strategy
known that solves Gathering of robots with limited viewing range. More generally, literature
about robots operating in three-dimensional spaces is very scarce. We summarize the literature
briefly. In [2] the authors show that gathering of robots in the three-dimensional Euclidean space is
possible – under the assumptions that robot have a global view but are not transparent and that the
robots agree on one axis of their coordinate systems. Tomaita et al. study a different problem – the
plane formation problem [12]. In the plane formation problem, the goal is that eventually all robots
are located on the same plane, while ensuring that no two robots occupy the same position. The
authors show that this problem is not solvable for every initial configuration, give a characterization
of all start configurations for which the problem is solvable and introduce an algorithm that solves
the problem for the latter set of configurations. Yamauchi, Uehara and Yamashita generalize this
result further and study the more general Pattern Formation for synchronized robots in the
three-dimensional Euclidean space [13]. They characterize the set of all patterns that might be
formable depending on symmetries of the initial configuration.

2 Gathering in Fsync
In this section, the three-dimensional Gathering problem will be studied under the Fsync model.
The results can be considered as a generalization of those obtained by Degener et al. [4] for the
two-dimensional setting. It will be shown that a generalization of GTC by Ando et al. [1] solves
the gathering problem in three dimensions in Θ(n2) rounds.
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2.1 3d-Go-To-The-Center

Algorithm 1 3d-Go-To-The-Center (3d-GTC)

1: Ri(t) := {positions of robots visible from ri, including ri at time t}
2: Si(t) := smallest enclosing sphere of Ri(t)
3: ci(t) := center of Si(t) . target point
4: for all rj ∈ Ri(t) do . Maintain connectivity
5: mj := midpoint between pi(t) and pj(t)
6: Bj(t) := ball with radius 1

2 and center mj

7: `j := maximum distance ri can move towards ci(t) without leaving Bj(t)
8: Li := minrj∈Ri(t) `j
9: Move towards ci(t) for a distance of Li

The strategy 3d-Go-To-The-Center (3d-GTC) is a generalization of Go-To-The-Center
to the three-dimensional Euclidean space and is summarized in Algorithm 1. A key component
is the computation of a smallest enclosing sphere (SES) of a set of points P. This is a sphere of
minimal radius that contains all points in P with the following properties:

Proposition 1. [5] Let S be the smallest enclosing d-sphere (SES) of a point set P ⊂ Rd. Then
the center c of S is a convex combination of at most d+ 1 points in P that lie on the surface of S.
Especially,

1. c lies in S

2. c minimizes the maximum distance to the points in P.

Intuitively, 3d-GTC works by attempting to locally move robots closer together. This is
achieved by letting each robot ri compute the SES of its neighborhood Ri(t) and then moving
towards its center ci(t). Additionally, the strategy follows the subgoal of maintaining connectivity
of UBGt+1. This is achieved by limiting the distance a robot ri moves towards its target ci(t),
such that for any of its neighbors rj , it stays within a distance of 1

2 of the midpoint between the
positions of ri and rj at time t. Thus, if both ri and rj perform this strategy, the distance between
their positions at the start of the next round t + 1 is at most 1, maintaining visibility. By the
argumentation above, the following Lemma holds.

Lemma 2. If UBG0 is connected, UBGt remains connected for all t ≥ 0.

Overall, the only difference to the original GTC strategy for two dimensions lies in the com-
putation of a smallest enclosing sphere in the 3D case over a smallest enclosing circle in the 2D
case. In fact, if the three-dimensional version is applied to a configuration of robots that is coplanar
with respect to some plane h, it acts just as if the robots’ positions were projected to h and the
two-dimensional version was applied to the resulting two-dimensional subspace. This is a result of
the fact that computing a SES of a set of coplanar points is equivalent to computing a smallest
enclosing circle instead.

From this observation, we can immediately conclude that the lower bound on the runtime of
the two-dimensional version of the strategy shown by Degener et al. [4] also applies to the three-
dimensional case by simply embedding the two-dimensional worst-case start configuration within
three-dimensional space: In the configuration, n robots are positioned on a circle such that the
distance between two neighbors is 1. This causes the robots to only take small steps of size O(1/n)
towards the center of the circle, leading to a gathering time of Ω(n2).
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Theorem 3. There is a start configuration such that 3d-GTC takes Ω(n2) rounds to gather the
robots in one point.

With a generalization of the analysis of [4], we can also prove an upper runtime bound of O
(
n2
)
.

Due to space constraints, the analysis is moved to Appendix A.

Theorem 4. Given n robots in a connected starting configuration P ∈ R3 in the Euclidean space,
3d-GTC gathers the robots in O(n2) rounds.

The combination of both theorems yields a tight runtime of Θ(n2).

3 Continuous Gathering

Now, we consider the Gathering problem within the continuous time model. For the Euclidean
plane, Li et al. [9] introduced the class of contracting strategies. This definition can also be applied
to three dimensions: Let CHt denote the closed convex hull of the robots’ configuration Pt at time
t and let Cornt denote the vertices of CHt. The class of contracting strategies can be defined as
follows:

Definition 1. In the continuous time model, a movement strategy for n robots is called contracting
if for every time t such that the cardinality of Cornt is strictly greater than 1, every robot in Cornt
moves with speed 1 in a direction that points to CHt.

The main idea of our analysis is to project the three-dimensional configuration (including the
velocity vectors) to a two-dimensional plane. The projected robots then perform something similar
to a contracting strategy where they move towards the inside of the projected convex hull with
varying speeds. However, when looking at only a single projection plane, some velocity vectors
might even have a length of 0 in the projection at some points in time (in case the projection
plane is chosen orthogonal to the velocity vector). Thus, the analysis of Li et al. cannot be directly
applied to the projection as this analysis assumes that all robots on the convex hull move with
speed 1 towards the inside. Instead, we analyze not only one but all possible (meaningfully different)
projections, since – intuitively – for a majority of all possible projection planes, the projected length
of a velocity vector must be larger than a constant ε.

3.1 Preliminaries

The following lemma is a useful tool for the analysis of continuous strategies stating how the distance
between two robots changes over time.

Lemma 5 ([8]). Consider two robots ri and rj with differentiable trajectories at time t. Their
distance d(pi(t), pj(t)) at time t changes with speed

d′(pi(t), pj(t)) = −(‖vi(t)‖ · cosβi,j(t) + ‖vj(t)‖ · cosβj,i(t)),

where βi,j(t) is the angle between ~vi(t) and the line segment pi(t)pj(t).

The main tool for the analysis of contracting strategies in the three-dimensional Euclidean space
are projections of the robots’ configuration onto a two-dimensional plane. Let h(~x) be the plane
through the origin with normal vector ~x and let Π~x denote the orthogonal projection onto h(~x).
Now, given a configuration P of n robots, consider their projection P̂(~x) = {Π~xpi(t) | pi(t) ∈ P}

6



Figure 1: A configuration of robots being projected onto a plane h(~x). The mapping of the orthog-
onal projection Π~x is illustrated by dashed lines and the projected convex hull PCHt(~x) is shown in
light grey. One of the robots’ movement vectors as well as its projection are represented by arrows.

onto h(~x) along with the projections of their movement vectors ~̂v
(~x)
i (t) = Π~x~vi(t). Furthermore,

denote the convex hull of P̂ as PCHt(~x). See also Fig. 3.1.
If the robots perform a contracting strategy in the three-dimensional space, their projections also

move towards the inside of the projected convex hull PCHt(~x) since Π~x is a linear transformation
and therefore preserves convexity. However, the lengths of the projected movement vectors ~̂vi(t) are
going be smaller than 1 in general. For a given projection onto a plane h(~x), the minimum length

of the ~̂v
(~x)
i (t) will be called the projected speed and is denoted by ε~x = minri∈R ||Π~x~vi(t)||. Note

that ε~x can even be 0 in case h(~x) is orthogonal to any velocity vector. The following notion of the
length of PCHt(~x) will be used as a part of a progress measure for three-dimensional contracting
strategies:

Definition 2. (Length) Let m1(t),m2(t), ...,mk(t)(t) be the vertices of PCHt(~x) (ordered counter-
clockwise), where k(t) is the number of vertices at time t. The length `(t, ~x) of PCHt(~x) is defined

as the sum of its edge lengths: `(t, ~x) =
∑k(t)

ι=1 d(mι(t),mι−1(t)), where m0 := mk(t)(t).

Note that if the diameter of the starting configuration was ∆, the length of a given projection
can be at most π∆ (if it approximates a circle). Furthermore, if `(t, ~x) = 0, then the robots have
either gathered in the original three-dimensional space or have formed a line that is parallel to ~x. In
the latter case it only takes further time of at most O(∆) for the robots to gather, as those robots
that form the endpoints of the line have no choice but to move towards each other. The following
Lemma provides a statement about how the length changes over time.

Lemma 6. For time t, let h(~x) be a plane with projected speed ε~x, such that `(t, ~x) > 0 and no two
robots with different positions in R3 get projected onto the same point on h(~x). Then `′(t, ~x) ≤ −8ε~x

n .

Proof. Because Π~x is a linear transformation, each of the mι(t) (corners of PCHt(~x)) must also be
the projection of one of the vertices of the original, three-dimensional convex hull CHt. Therefore,

7



they possess velocity vectors that point towards the inside of CHt by the definition of a contracting

strategy. Now consider the projections of these velocity vectors onto h(~x): Let ~̂v
(~x)
i (t) := Π~x~vi(t).

By assumption, we have ||~̂v(~x)i (t)|| ≥ ε~x. Using this, it is now possible to bound `′(t, ~x): Let αι(t)
be the internal angle of PCHt(~x) at mι(t).

Note that in general, it may happen that two corner robots of CHt got projected onto the same
point on h(~x) for some ~x. By one of the assumptions of the lemma, this is not true. Therefore,
we know that each corner mι(t) of PCHt(~x) contains only a single robot. This means that each

αι(t) is split into two parts, β̂ι,ι−1(t) and β̂ι−1,ι(t) by mι(t)’s velocity vector ~̂v
(~x)
ι (t), such that

αι(t) = β̂ι,ι−1(t) + β̂ι−1,ι(t). Using Lemma 5 and Proposition ??, the derivative of `(t) can now be

bounded as follows: Recall that `′(t, ~x) =
∑k(t)

ι=1 d
′(mι(t),mι−1(t)):

`′(t, ~x) =

k(t)∑
ι=1

d′(mι(t),mι−1(t)) (1)

=

k(t)∑
ι=1

−
(
||~̂v(~x)ι (t)|| cos β̂ι,ι−1(t) + ||~̂v(~x)ι−1(t)|| cos β̂ι−1,ι(t)

)
(2)

≤ −ε~x
k(t)∑
ι=1

cos β̂ι,ι−1(t) + cos β̂ι−1,ι(t) (3)

= −ε~x
k(t)∑
ι=1

2(αι(t)− π)2

π2
(4)

= −2ε~x
π2

k(t)∑
ι=1

(αι(t)− π)2 (5)

For Equation (4) observe that for ϑ ∈ [0, 1] and α ∈ [0, π], it holds that cos(αϑ) + cos(α(1− ϑ)) ≥
2(α−π)2

π2 [10]. Now, the Cauchy-Schwarz inequality along with the fact that the sum of the inner
angles of a convex polygon with k corners is (k − 2) · π.

`′(t, ~x) ≤ − 2ε~x
k(t) · π2

·
( k(t)∑
ι=1

(αι(t)− π)
)2

= − 2ε~x
k(t) · π2

·
(
(k(t)− 2) · π − k(t) · π

)2
= − 8ε~x

k(t)
≤ −8ε~x

n

This concludes the proof.

Note that this also means that `(t, ~x) is monotonically decreasing over time.

3.2 Proof of the upper bound

The main idea of the analysis is to track the lengths `(t, ~x) for all (meaningfully different) projection
planes h(~x). Since the length of the normal vector does not matter, it is enough to consider only
vectors ~x of length 1. Additionally, a vector ~x and its reflection about the origin −~x describe
the same plane. Therefore it is enough to consider those vectors that lie on the surface of a unit
hemisphere U centered around the origin (w.l.o.g. the one above the XY -plane).

8



ε
~vi(t)

Figure 2: A figure illustrating how movement vectors block areas of the unit hemisphere U . Around
each movement vector ~vi(t), there is a spherical cap of radius ε. Each plane corresponding to a
normal vector ~x lying in one of those spherical caps is blocked.

The integral of the lengths `(t, ~x) with respect to ~x on the surface of U at time t can now be
used as a measure to track the progress of a three-dimensional gathering strategy:

L(t) =

∫∫
U
`(t, ~x)dA

If L(t) = 0, the robots have gathered. If one of the `(t, ~x) prematurely becomes 0, then the
robots are collinear and gather in further time O(∆).

Lemma 7. L(0) ≤ 2π2∆.

Proof. Since `(t, ~x) ≤ π∆ (if PCHt(~x) approximates a circle), we conclude

L(0) ≤
∫∫

U
π∆dA = π∆

∫∫
U
dA

The remaining integral part is a surface integral over a hemisphere. By observing that the surface
area of a unit hemisphere is 2π, the lemma follows.

The goal of the proof is to show that there is at least a constant (1 − α)-fraction of projection
planes h(~x) with projected speed at least ε for some constants α and ε. This can then be used to
show that L(t) decreases by a constant amount at each point in time using Lemma 6.

Now consider a projection plane h(~x). If this plane has projected speed smaller than ε at time
t, then there is a movement vector ~vi(t), such that ∠(~x,~vi(t)) < sin−1 ε. We say that ~vi(t) blocks
h(~x). Conversely, given a ~vi(t), we can determine the set of all the h(~x) that are blocked by this
~vi(t):

Lemma 8. At time t, the movement vector ~vi(t) blocks vectors from an area of 2π
(
1 −
√

1− ε2
)

on U from reaching projected speed ε.

9



Proof. W.l.o.g. it can be assumed that ~vi(t) has a positive z-component, i.e. lies on U . Otherwise
it can be reflected about the origin and it will still affect the exact same planes.

Now consider the spherical cap of U with base radius ε and apex ~vi(t) and let C be its curved
surface (see Fig. 3.2 for an illustration). For all vectors ~x ∈ C, h(~x) is blocked from reaching
projected speed ε. The area of C can be computed by AC = 2πr2(1−cos θ) = 2π(1−cos(sin−1 ε)) =
2π(1−

√
1− ε2)

Since there are n robots, the area blocked by their movement vectors is at most n·2π(1−
√

1− ε2),
whereas the total surface of U is 2π. If we want the movement vectors to block only an α-fraction
of U ’s surface, the ε can be chosen accordingly:

Lemma 9. Let 0 ≤ α ≤ 1. Then for a minimum speed of ε =
√
2nα−α2

n , there is at most an
α-fraction of the surface of U that is blocked with respect to ε.

Proof. U has a surface of 2π and the robots’ movement vectors block an area of at most n · 2π(1−√
1− ε2). We want to choose ε such that the following holds:

α2π = n · 2π(1−
√

1− ε2) ⇐⇒ ε =

√
2nα− α2

n

Using this lemma, it is now possible to bound the decrease of the progress measure L(t) for a
given α:

Lemma 10. For a time t ≥ 0 such that `(t, ~x) > 0 for all ~x ∈ U and 0 ≤ α ≤ 1, then L′(t) ≤
−16π · (1− α) ·

√
2nα−α2

n2 .

Proof. Choose ε =
√
2nα−α2

n according to Lemma 9, i.e. there is only at most an α-fraction of the
surface of U that is blocked. Since Lemma 6 only applies to those ~x for which no two robots get
projected onto the same point, the ~x for which this is the case still have to be considered. However,
there is only a finite number

(
n
2

)
of such vectors out of the uncountably many that form U and they

are only singular points on U . Therefore, they can be ignored when considering the integral L(t).
By Lemma 6, there is an (1 − α)-fraction of vectors ~x from the surface of U (which has size 2π)

with `′(t, ~x) ≤ −8ε
n = −8

√
2nα−α2

n2 . Using this, we can bound L′(t):

L′(t) =
d

dt

(∫∫
U
`(t, ~x)dA

)
=

∫∫
U
`′(t, ~x)dA

≤ (1− α) · 2π · −8

√
2nα− α2

n2
= −16π · (1− α) ·

√
2nα− α2

n2

By choosing the α appropriately, the main result can now be obtained:

Theorem 11. A set of n robots controlled by a contracting strategy gathers in time O
(
∆ · n3/2

)
from an initial configuration with diameter ∆.
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Proof. By Lemma 7, we have L(0) ≤ 2π2∆. By Lemma 10, L(t) decreases by at least 16π · (1 −
α) ·

√
2nα−α2

n2 for a given α as long as `(t, ~x) > 0 for all ~x ∈ U . However, if there is an ~x ∈ U with
`(t, ~x) = 0, then the robots are collinear along some line that is parallel to ~x and take further time
O(∆) to gather.

Now choose α = 1
2 and consider an arbitrary time t such that `(t, ~x) > 0 for all ~x ∈ U . Then

L′(t) ≤ −8π 1
n3/2 . Therefore it takes time at most (2π2∆)/(8π 1

n3/2 ) = π
4∆n3/2 until L(t) is zero.

This leads to a gathering time of O
(
∆ · n3/2

)
+O(∆) ∈ O

(
∆ · n3/2

)
.

3.3 Continuous-3d-Go-To-The-Center

Next, a continuous version of 3d-GTC which was already presented for the discrete time setting,
will be considered as a concrete example of a contracting strategy. The two-dimensional version
of this strategy was adapted for continuous time by Li et al. [10]. Compared to the discrete time
version, no additional measures have to be taken to preserve connectivity, as it can be shown that
this happens naturally in the continuous case. The strategy is summarized in Algorithm 2.

Algorithm 2 Continuous-3d-Go-To-The-Center (Cont-3d-GTC)

1: Ri(t) := {positions of robots visible from ri, including ri at time t}
2: Si(t) := smallest enclosing sphere of Ri(t)
3: ci(t) := center of Si(t)
4: Move towards ci(t) with speed 1, or stay on ci(t) if ri is already positioned on it.

To show that Cont-3d-GTC is contracting, it must first be verified that connectivity of the
visibility graph UBGt = (R, Et) is maintained at all times. The same reasoning that was used in
the two-dimensional case by Li et al. [10] can also be applied here:

Lemma 12. Let R be a set of robots in the three-dimensional Euclidean space that follows the
Cont-3d-GTC strategy. If {ri, rj} is an edge in UBGt at time t, then {ri, rj} is an edge in UBGt′

at t′ ≥ t. Thus, Cont-3d-GTC maintains the connectivity of UBGt.

Proof. Consider a robot ri with neighborhood Ri(t) at time t. Let Qi(t) be the intersection of the
unit balls of all robots in Ri(t). Since the SES of Ri(t) can have a radius of at most 1 and contains
all robots in Ri(t), its center ci(t) must lie in Qi(t).

Consider some neighbor rj ∈ Ri(t) of ri and assume that there is some future point in time
t′ > t, such that d(pi(t

′), pj(t
′)) > 1, i.e. ri and rj are no longer neighbors. Since the movement of

robots is continuous, there must be some time t∗ ∈ [t, t′], for which d(pi(t
∗), pj(t

∗)) = 1.
Now let L denote the intersection of the unit balls of ri and rj at time t∗. Any point in L is

within distance at most 1 of both ri and rj . Furthermore L is a superset of both Qi(t
∗) and Qj(t

∗),
meaning the target points ci(t

∗) and cj(t
∗) of both ri and rj also lie in L. Therefore, ri and rj can

only move in the direction of points that are in distance at most 1 from both of them, meaning
their distance can never exceed 1, creating a contradiction to the assumption that their distance is
greater than 1 at time t′.

It remains to show that Cont-3d-GTC is a contracting strategy. This follows directly from
Lemma 12 and Proposition 1, which states that the center of a SES is a convex combination of the
points it encloses, meaning any target point computed by the strategy lies within the convex hull
of the current configuration.

Theorem 13. Cont-3d-GTC is a contracting, local strategy and thus gathers the robots in time
O
(
∆ · n3/2

)
.
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3.4 Tangential-Normal Strategies

Previously, we showed a runtime bound for a relatively general class of (not necessarily local)
gathering strategies and introduced a concrete example in Cont-3d-GTC. However, when designing
a local strategy, additional care has to be taken to maintain the visibility graph UBGt to successfully
solve the Gathering problem. It would be useful to also have a relatively simple design criterion
that ensures this property. For this purpose, we will focus on robots’ local convex hulls and introduce
the notion of tangential-normal strategies. Let CH(Ri(t)) denote the local convex hull of robot ri,
i.e. the convex hull of ri’s neighborhood. Furthermore, let Adjt(i) denote the set of robots that are
adjacent to ri on CH(Ri(t)) if ri lies on CH(Ri(t)) itself. The main idea is to identify those velocity
vectors that lead to a decrease in distance to all neighboring robots. These vectors are the normal
vectors of tangential planes:

Definition 3. Given a convex polyhedron P ⊂ R3 and a vertex p ∈ P . A tangential plane hp w.r.t.
P through p is a plane that only intersects P at the vertex p.

Note that as long as P is actually convex, such a plane always exists and can – for example
– be obtained by taking the plane through one of the faces adjacent to p and slightly rotating it.
Based on this notion, we define the class of tangential-normal strategies in which the corner robots
of local convex hulls move along the normal vectors of tangential planes:

Definition 4. In the continuous time model, a gathering strategy for n robots is called tangential-
normal if for every time t in which the robots have not yet gathered, each robot ri ∈ R that is on
a corner of its own local convex hull CH(Ri(t)) moves with speed 1 along the normal vector of a
tangential plane w.r.t. CH(Ri(t)) through pi while other robots do not move.

The following lemma characterizes the normal vectors of tangential planes and will be used to
show the desired properties of tangential-normal strategies.

Lemma 14. Let pi be a corner of a convex polyhedron P and let Ei be the set of edges of P adjacent
to pi. Then a plane h through pi with normal vector ~n is a tangential plane w.r.t. P if and only if
for each edge e ∈ Ei, ∠(~n, e) < π

2

Proof. First, note that by the convexity of P and since h only intersects with it in pi, the entire
rest of P lies on one side of h. However, if there was an edge e with ∠(~n, e) ≥ π

2 , this would mean
that e lies on the opposite side of or directly on h, both of which are contradictions to h being a
tangential plane.

For the other direction of the statement, let ~n be a vector such that for each edge e ∈ Ei,
∠(~n, e) < π

2 . This property now immediately yields that all edges e ∈ Ei lie on the same side of
the plane h : ~n · (x − pi) = 0 defined by ~n and the point pi, making h a tangential plane w.r.t. P
through pi.

Theorem 15. Let R be a set of robots controlled by a tangential-normal strategy. Then, for each
pair of robots ri, rj ∈ R and time t such that {ri, rj} is an edge in UBGt, {ri, rj} is an edge in
UBGt′ for all t′ ≥ t. Thus, tangential-normal strategies maintain the connectivity of UBGt.

Proof. Let R be a set of robots that follows a tangential-normal strategy. Consider a time t and
a robot ri ∈ R that lies on the corner of its own local convex hull CH(Ri(t)) and let vi(t) be the
normal vector of a tangential plane hpi w.r.t. CH(Ri(t)). By Lemma 14, for each adjacent robot
rj ∈ Adjt(i), it holds that βi,j(t) <

π
2 . Since the cosine is positive on the interval [0, π2 ], Lemma 5

yields that ri contributes a strict decrease in distance to all of its neighbors. A neighbor rj now
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either does not move or also contributes a decrease in distance to ri. This also means that for each
pair of robots ri and rj that can see each other, the distance between ri and rj cannot increase,
guaranteeing that the visibility graph remains connected.

Note however that while the tangential-normal property is a sufficient condition for ensuring
connectivity, it is not a necessary condition. In particular, Cont-3d-GTC is not tangential-normal
but is still able to maintain the connectivity of the visibility graph.

3.5 Move-on-Angle-Minimizer

Next, we introduce a strategy based on the tangential-normal criterion. It is based around the
idea to find a movement vector that somehow causes a large decrease in distance to all neighbors.
Since a smaller angle causes a greater decrease in distance (according to Lemma 5), one intuitive
approach might be to find a movement vector that minimizes the maximal angle to all neighbors
on the convex hull. To this end, the notion of an angle minimizer will be introduced. Let V =
{~v1, ~v2, ..., ~vk} ⊂ R3 be a set of vectors that lie on one side of a plane through the origin. Then the
vector ~x∗ = argmin~x∈R3 max~vi∈V ∠(~x,~vi) is called an angle minimizer of V .

Now, we define a strategy in which each robot that is a corner of its local convex hull ri moves
along the angle minimizer of the edges between itself and the robots in Adjt(i). This strategy will
be called Move-on-Angle-Minimizer and is summarized in Algorithm 3.

Algorithm 3 Move-on-Angle-Minimizer

1: Ri(t) := {positions of robots visible from ri, including ri at time t}
2: CH(Ri(t)) := Convex hull of ri’s neighborhood
3: if ri is on a corner of CH(Ri(t)) then
4: ~x∗ = argmin~x∈R3 maxrj∈Adjt(i)

∠(~x, pj(t)− pi(t))
5: ri moves along ~x∗ with speed 1
6: else
7: ri does not move

Note that if a robot ri’s local convex hull is two-dimensional, the angle minimizer is identical
to the angle bisector of the inner angle at ri. Therefore, this strategy can also be viewed as
a generalization of Move-on-Bisector for two-dimensional continuous gathering [7], for which
Kempkes et al. [3] could show an optimal gathering time of Θ(n).

It will now be shown that the presented strategy is both a tangential-normal and a contracting
strategy. By Lemma 14 and the existence of a tangential plane, we already know that there is a
possible movement vector that has an angle of less than π/2 to all neighbors on the local convex
hull Therefore, the same must hold for ~x∗, immediately showing that Move-on-Angle-Minimizer
is a tangential-normal strategy.

Lemma 16. Move-on-Angle-Minimizer is a tangential-normal strategy.

Computing ~x∗ In order to see that Move-on-Angle-Minimizer is also a contracting strategy,
we look at a method to compute the angle minimizer.

Let ~̂v = ~v/||~v|| denote the respective normalized vector of ~v and let V̂ = {~̂v | ~v ∈ V } for a set V
of vectors. Then the following holds:

Lemma 17. Let V ⊂ R3 be a set of vectors that all lie on one side of a plane through the origin.
The center ~c of the smallest enclosing sphere of V̂ is an angle minimizer of V .
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Proof. Let ~x be a vector such that ∠(~x,~vi) ≤ π/2 for all ~vi ∈ V . Such a vector exists, since there
is a plane such that all ~vi lie on one side of this plane.

Now consider the normalized vectors ~̂vi. They lie on the surface of the unit sphere centred on
the origin. Let C~x be the minimal spherical cap centred on the vector ~x such that all the ~̂vi lie on
its surface. The vector ~̂vj ∈ V̂ with the maximal angle to ~x lies on the edge of the base of C~x. The

maximal angle can now be computed using the radius r of C~x as ∠(~x, ~̂vj) = sin−1 r.
Since sin−1 is monotonically increasing on the interval [0, 1], finding the angle minimizer ~x∗ now

amounts to finding the center ~c of a spherical cap with minimal radius, which can be achieved by
computing the smallest enclosing sphere of V̂ .

By applying the fact that the SES of V̂ is a convex combination of V̂ (Proposition 1), this
lemma together with Lemma 16 immediately yields that Move-on-Angle-Minimizer is also a
contracting strategy.

Theorem 18. Move-on-Angle-Minimizer is a tangential-normal and a contracting strategy.
Thus, it gathers the robots in time O

(
∆ · n3/2

)
.
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Figure 3: A plane dividing a sphere into two spherical caps. The smaller cap on top has apex A,
height h and base radius a.

A Analysis of 3d-Go-To-The-Center

In this section, we show that the upper bound of O(n2) that Degener et al. [4] presented for Go-
To-The-Center also holds for 3d-Go-To-The-Center. As such, the analysis largely consists
of a generalization of the proof by Degener et al. for three dimensions and therefore, each lemma
provides an analogous result to a similar lemma used in the original proof for two dimensions.

Before beginning with the main analysis, some useful general properties of SESs will be stated.
Two concepts that will be used throughout the proof are the notions of convex combinations and
spherical caps.

Given a finite set of points P = {p1, . . . , pn}, a point x is a convex combination of P, if there
are scalar coefficients αi ≥ 0, such that x =

∑n
i=1 αipi and

∑n
i=1 αi = 1. The set of all convex

combinations of P is identical to the convex hull of P. A spherical cap is a region of a sphere cut
off by a plane and is illustrated in Fig. A. It consists of a circular base with a radius a which is
formed by the intersection of the plane and the sphere and a curved surface with an apex A. The
distance between the base and the apex is called the height h of the spherical cap.

Proposition 1. [5] Let S be the smallest enclosing d-sphere (SES) of a point set P ⊂ Rd. Then
the center c of S is a convex combination of at most d+ 1 points in P that lie on the surface of S.
Especially,

1. c lies in S

2. c minimizes the maximum distance to the points in P.

Definition 5. Let S be a sphere and P a point set. A spherical cap of S whose curved surface does
not contain any points from P is called a point-free cap.

Using this definition, the following Lemma can be stated about SESs:

Lemma 19. Let S be the SES with radius r of a set of n ≥ 2 points. Then there is no point-free
cap of S with height h, such that h > r.

Proof. Let S be the SES of a set of n ≥ 2 points with center c and radius r. Assume there is a
point-free cap with height h > r.
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Without loss of generality, rotate and translate the coordinate system such that c lies at the
origin and the apex of the point-free cap lies on the positive x-axis. Let cx be the x-component of
c. Then for any point p on the surface of S, its x-component px is at most

px < cx − (h− r) < cx. (6)

Therefore, c cannot be a convex combination of points on the surface of S. By Prop. 1, c cannot
have been the center of a SES, leading to a contradiction.

A.0.1 Progress Measures

In order to determine the progress of the gathering, two measures will be used. Firstly, consider
what happens if two robots move to the exact same position at the same time: Since the strategy
is deterministic, the two robots will always observe the same neighborhood and therefore always
compute the same target point. We say two such robots have merged. Starting with n robots, there
can clearly be at most n−1 rounds with merging events until all robots have gathered. This number
of merges will be used as the first progress measure.

Now let Nt be the global SES around a center Mt with radius Rt in some round t ≥ 0. The
radius Rt can be used as a second progress measure: The robots always move towards the centers
of their respective (local) SES. By Prop. 1, these centers always lie within the convex hulls of the
respective neighborhoods and therefore also within the global convex hull. Since robots do not leave
the global convex hull, they also cannot leave Nt, meaning Rt can not increase with time.

On the other hand, once Rt is smaller than 1/2, all robots are within distance of at most 1 of
each other, meaning each robot sees every other robot. At this point, they will all compute the
same target point Mt and be able to move to it since the limiting spheres Bj(t) with radii 1/2 must
contain Mt for all pairs of robots ri and rj .

The overall idea of the proof is now to show that during a constant number of rounds, either
two robots merge, or Rt decreases by at least Ω(1/n). Since the initial radius R0 is O(n) if the
initial configuration is connected, this yields a total gathering time of O(n2) rounds.

During the rest of the analysis, consider some arbitrary but fixed round t0 and let N and R
denote Nt0 and Rt0 respectively. In order to show the progress of the two measures mentioned
above, the analysis will focus on a certain region of N . Let P be an arbitrary point on the surface
of N and define a spherical cap C with apex P as follows (see Fig. A.0.1 for an illustration of the
construction): Choose the height h of C, such that the slant height of the inscribed cone of C is 1/8,
i.e. such that h2 +a2 = (1/8)2. Note that this causes the radius a to be bounded by 1/8. Therefore
the diameter of C as a whole is at most 1/4. C is then separated into two parts by intersecting N
with another plane that is parallel to the base of C, creating another spherical cap C1 with height
h/2 that also has P as its apex. The remaining spherical segment C \ C1 is called C2.

The goal is to now show that within two consecutive rounds t0 and t0 + 1, either at least two
robots merge, or all robots leave C1. In order to quantify the progress made in case the latter
happens, a bound on h is needed, which will be provided by the following lemma:

Lemma 20. The spherical cap C has a height h of at least 1
64π·R ∈ Ω

(
1
n

)
.

Proof. The proof proceeds very similarly to that of the analogous lemma by Degener et al. [4] for
the two-dimensional case. The goal is to use the angle α between the height h of C and the (known)
slant height (1/8) of the inscribed cone of C (see Fig. A.0.1) to compute a bound on h. In order
to do this, consider a circle K with radius R, with the same midpoint as N and containing P .
The angle α can be considered to be half of the internal angle of a regular convex polygon with
side length 1/8 and whose m vertices lie on K. Since the circumference of K is 2πR, the number
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of vertices m is bounded by 16πR. The sum of angles of such a convex polygon is now given by
(m− 2)π. This yields the following bound on α:

2α ≤ (16πR− 2)π

16πR
= π − 1

8R

⇔ α ≤ π

2
− 1

16R

Using the fact that cos(x) ≥ − 2
πx+ 1 for 0 ≤ x ≤ π/2, we can now obtain a bound on h:

h =
cos(α)

8
≥ 1

8
·
(
− 2

π
α+ 1

)
≥ 1

8
·
(
− 2

π
·
(π

2
− 1

16R

)
+ 1
)

=
1

64πR

Since N is a SES, its radius R is at most n/2. Therefore, we have h ∈ Ω
(
1
n

)
.

Figure 4: Illustration of the spherical cap C with apex P , consisting of the smaller cap C1 and the
spherical segment C2. The height h is chosen such that the inscribed cone of C has a slant height
of 1/8.

A.0.2 Properties of Target Points

First, some properties of SES that can be computed by robots in and around C will be given. These
will be useful later on to identify situations in which robots leave C, as well as ensuring that no
further robots enter it.
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Figure 5: Illustration of the setting of Lemma 21. A sphere with its center c in the spherical cap C
and a radius r that is greater than the diameter of x of C cannot be a SES of points in N .

Lemma 21. Let x be the diameter of a spherical cap C of N . Then any sphere S with its center c
in C and radius r > x cannot be a SES of points in N .

Proof. The setting of the lemma is described in Fig. A.0.2. Since the center of S lies in C and the
radius r of S is greater than the diameter x of C, every intersection point of S and N lies outside
of C. The (circular) intersection of S and N , I = S ∩ N , therefore lies completely outside of S.
Now let CI be the spherical cap of S whose curved surface lies outside of N and that has I as its
base. Let hI be its height and AI be its apex. Note that CI is therefore a point-free cap w.r.t. any
set of points lying in N .

Now consider the height hI of CI : Since I lies outside of C, so does its center cI . The line
segment between AI and cI therefore has to pass through c, which lies within C. Thus, we have
that hI > r. By Lemma 19, this means that S cannot have been a SES of points in N .

Since the diameter of C is at most 1/4, this immediately yields the following corollary:

Corollary 22. The radius of a SES of a point set P ⊆ N with its center in C is at most 1/4.

The next lemma will be used to show that a robot with a neighbor that is positioned far away
from C cannot compute a target point in C.

Lemma 23. Let P ⊆ N be a set of points and let A be a point in C (not necessarily in P). If
there is a point B ∈ P in distance more than 1/2 from A, then the center of the SES of P cannot
lie in the cap C.

Proof. Assume the SES S of P has its center c in C. Corollary 22 shows that the radius of S can
be at most 1/4 and since B lies in S, we have d(c,B) ≤ 1/4. Since A and c both lie in C (which
has a diameter of at most 1/4), we also have d(c,A) ≤ 1/4. Applying the triangle inequality yields:

d(A,B) ≤ d(c,A) + d(c,B) ≤ 1

4
+

1

4
=

1

2
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Which is a contradiction to d(A,B) > 1/2, meaning c cannot lie in C.

The next lemma concerns local configurations of robots consisting of only a single robot in C
and a number of robots outside of C. It shows that in such a scenario, the target point computed
by the strategy must lie outside of C1.

Lemma 24. The center of the SES S of a non-empty point set P ⊆ N \ C and a point A ∈ C
cannot lie in the spherical cap C1.

Proof. By Prop. 1, the center c of S is a convex combination of at most 4 points lying on the
surface of S. In other words, c is the center of the circumscribed circle of either a line, a triangle or
a tetrahedron. There are multiple cases that can occur regarding those points defining S.

First, consider the case that there is no subset of points P ′ ⊆ P ∪ {A} on the surface of S
containing A, such that c is a convex combination of points from P ′. Then c must lie outside of C,
since it is a convex combination of points outside of C.

Now consider the case that A is one of the points defining c, i.e. it is part of a set of points P ′
such that c is a convex combination of P ′. If A does not lie in C1, then c once again cannot lie in
C1 either. Now assume that A ∈ C1 and consider multiple sub-cases depending on the cardinality
of P ′: The first two cases are completely analogous to the proof of the two-dimensional version of
the Lemma shown by Degener et al. [4].

• Case |P ′| = 2: S is defined by A and another point P ∈ P. Since S is a SES, c is the midpoint
between A and P . Between A and P lies the spherical segment C2, with the same height as
C1, in which A lies. Therefore, the midpoint between them cannot lie in C1.

• Case |P ′| = 3: S is the circumscribed circle of a triangle ∆AP1P2 formed by A and two other
points P1 and P2. The center of S can now be computed by determining the intersection
of the perpendicular bisectors of two of the triangle’s sides, say AP1 and AP2. Since A lies
inside C1 and the other two points lie outside of C, the centers of those two sides cannot lie in
C1. Furthermore, c must lie inside of the triangle as it is a convex combination of its corners,
meaning it is acute. Therefore, the intersection point of the perpendicular bisectors cannot
lie in C1.

• Case |P ′| = 4: S is the circumscribed sphere of a tetrahedron T formed by the points A,
P1, P2 and P3. Similarly to the previous case, c lies at the intersection of the perpendicular
bisector planes of three edges of T . Choose those three edges as those adjacent to A. Their
midpoints once again must lie outside of C1, since the points P1, P2 and P3 lie outside of C.
Since c has to lie inside of T , and the three edges are all adjacent to the same point A, their
bisector planes can only meet below their midpoints, outside of C1.

A.0.3 Hindering Robots

In the previous subsection, several properties concerning the target points of robots have been
established. However, due to the second part of the strategy, robots are not always able to reach
their target points. In particular, if a robot ri has a neighbor rj such that ri’s target point lies
outside of the limit sphere Bj(t) of rj , then ri will be stopped by that limit sphere. If this is the
case, we say that rj hinders ri from reaching its target point.

Next, it will be established that robots always reach their target points if they lie within C.
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Lemma 25. Robots that compute a target point in C cannot be hindered from reaching it by any
other robot.

Proof. Let ri be a robot that computes a target point c within C, which is the center of the SES
Si. Assume there is a robot rj in the neighborhood of ri that hinders ri from reaching c.

By Corollary 22, we know that Si has a radius of at most 1/4. Since rj ’s position must lie
within Si, it can have a distance of at most 1/2 to ri. Therefore, the midpoint mj between ri
and rj ’s positions is within a distance of at most 1/4 from ri. This leaves a distance of at least
1/2− 1/4 = 1/4 that ri can move freely without leaving the limit sphere of rj . As Si has a radius
of at most 1/4, this is enough to reach c, meaning rj cannot have hindered ri.

Similarly, robots cannot be hindered from leaving C, as is shown by the following lemma.

Lemma 26. Robots cannot be hindered from leaving C by any other robot.

Proof. Let ri be a robot in C that computes a target point c outside of C and let m be the point
where ri would leave C. Note that d(pi,m) ≤ 1/4, since the diameter of C is at most 1/4.

Now assume that there is a robot rj hindering ri from leaving C. First of all, rj must be a

neighbor of ri, meaning it is within distance 1 of ri as well as c. Now, let mj =
pi+pj

2 be the
midpoint between ri and rj . For rj to hinder ri from reaching m, m must lie outside of rj ’s limit
sphere, i.e. d(m,mj) > 1/2. Furthermore, let p′i = 2m − pi be the reflection of pi about m. Note

that m =
p′i+pi

2 . Putting these together yields:

d(m,mj) = ||m−mj || >
1

2

⇐⇒ ||p
′
i

2
+
pi
2
− pi

2
− pj

2
|| >

1

2
⇐⇒ ||p′i − pj || > 1

⇐⇒ d(pj , p
′
i) > 1

To summarize, we now have the following three constraints on the position of pj :

d(pj , pi) ≤ 1 (7)

d(pj , c) ≤ 1 (8)

d(pj , p
′
i) > 1 (9)

From this we can conclude that c must lie in between pi and p′i as follows: Assume p′i lies between c
and pi instead. By the constraints (7) and (8), pj must lie within the overlap of two balls of radius
1 centered around pi and c. However, it must lie outside of the ball of radius 1 centered around
p′i (9). Since p′i lies on the line segment between pi and c by assumption, the entire overlap of the
first two balls must be contained within the last ball around p′i, leaving no viable positions for pj .
Therefore, p′i cannot lie between pi and c and thus, c must lie between pi and p′i instead.

Based on what is now known about the position of c, another spherical segment can be defined
that has to contain p′i and c: Let C3 be the spherical segment of N below C (see Fig. A.0.3). It is
defined by the base of C and another plane l which is parallel to and in distance h of the base of
C. The diameter of C3 is now the diameter of the intersection of l and N and can be bounded as
follows: Once more consider the inscribed cone of C. Now extend this cone until it intersects with
l. Note that this extended cone now has height 2h and slant height 1/4 (since the slant height of
the initial inscribed cone was 1/8 by construction). Therefore, the radius of its base is also at most
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Figure 6: A cross-section of N illustrating the construction of the spherical segment C3. It lies
below and has the same height as C and is defined by the base of C and the plane l. Its diameter
is at most 1/2.

1/4. Since the cone intersects N at the base of C, it must intersect l outside of N , meaning the
base of C3 is completely contained within the base of the cone. Therefore, the diameter of C3 can
be at most 1/2.

Note that since p′i was defined as the reflection of pi about a point on the base of C, and C3 has
the same height as C, p′i and therefore also c must be contained in C3. Thus, we have d(c, p′i) ≤ 1/2.
Using Lemma 21 and the diameter of C3, the radius of the SES corresponding to the target point
c can now be further bounded to be at most 1/2, i.e. d(pj , c) ≤ 1/2. Putting these two bounds
together and applying the triangle inequality yields:

d(pj , p
′
i) ≤ d(pj , c) + d(c, p′i) ≤

1

2
+

1

2
= 1

This is a contradiction to d(pj , p
′
i) > 1 (9), meaning rj cannot have hindered ri from leaving

C.

A.0.4 The Upper Bound

Now that the necessary preliminaries have been established, putting them together to acquire the
main result works completely analogously to the proof for the two-dimensional case shown by
Degener et al. [4].

Lemma 27. Let P be a set of robots in round t0 that are all positioned in or compute a target point
in C and that all have pairwise different neighborhoods. Then at most one of those robots is in C
at the beginning of the next round.
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Proof. Let ri be a robot whose set of neighbors Ri(t0) is minimal, i.e. no other robot rj ∈ P \ {ri}
has a neighborhood Rj(t0) that is a strict subset of Ri(t0). Therefore, all other robots rj have a
neighbor rk that is not seen by ri, i.e. d(ri, rk) > 1.

First consider the case that ri is positioned in C: In this case Lemma 23 can be applied to show
that no neighbor rj of ri can compute a target point in C by choosing Rj(t0) as the point set P,
the position of ri as the point A and the position of rk as the point B in distance greater than 1/2
of A. Note that any robot outside of C that could potentially compute a target point in C must
be within distance 1/4 of C by Corollary 22 and is therefore at most a distance of 1/2 away from
ri and thus its neighbor. It follows that only ri could possibly remain in C.

On the other hand, if ri is positioned outside of C, ri computes a target point in C by the
definition of P. By Corollary 22, the SES of Ri(t0) now has a radius of at most 1/4, meaning ri is
also at most a distance of 1/4 away from C and also in distance at most 1/2 from any point in C.
Now again consider a robot rj ∈ P \ {ri} with a neighbor rk that is unseen by ri. For this robot rk,
we must have d(rk, C) > 1/2, otherwise it would be a neighbor of ri, since it would be in distance
1 of it by applying the triangle inequality:

d(rk, C) + d(ri, C) ≤ 1 < d(ri, rk)

From this, it can be concluded that rj ’s target point cannot lie in C: If it was in C, the radius of
Rj(t0)’s SES would also be at most 1/4 by Corollary 22, meaning it could not contain rk. This
means that rj is positioned in C by definition of P and computes a target point outside of C. By
Lemma 26, rj cannot be hindered from leaving C. Since this holds for all robots except for ri, ri is
once again the only robot that might remain in C in the following round t0 + 1.

Using this lemma, it is now finally possible to show that the progress measures mentioned earlier
in this section always improve during a pair of consecutive rounds:

Lemma 28. If Rt ≥ 1/2, either there are robots that merge in round t or after rounds t and t+ 1,
the cap C1 does not contain any robots.

Proof. Consider all robots that are positioned in or compute a target point in C. We can distinguish
two types of robots: Firstly, there are robots ri that have a neighbor rj with the same neighborhood,
i.e. Ri(t) = Rj(t). This means that ri and rj compute the same target point. If there is such a
pair of robots that compute a common target point in C, then by Lemma 25, they both reach it
and thus merge and fulfill the Lemma to be proven. On the other hand, if such a pair does not
exist, then all robots sharing neighborhoods with other robots must compute target points outside
of C and are not hindered from leaving C (Lemma 26) if they were positioned inside of it, meaning
none of them can remain within C at the end of the round.

It remains to consider the set of robots that all have pairwise different neighborhoods and also
either lie in or compute a target point in C. This is the exact situation described by Lemma 27,
meaning at most one of these robots can remain within C after round t.

Therefore, in the beginning of round t+1 and if no robots merged in round t, at most one robot
ri remains within C. If it lies in C2, we are done. Otherwise, if it lies in C1, only ri itself and its
neighbor could possibly compute a target point in C1. However, by Lemma 24, this cannot happen
and by Lemmas 25 and 26, ri cannot be hindered from leaving C1 at which point no robots remain
in C1.

Using this lemma now yields the main result.

Theorem 4. Given n robots in a connected starting configuration P ∈ R3 in the Euclidean space,
3d-GTC gathers the robots in O(n2) rounds.
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Proof. Fix an arbitrary round t0 ≥ 0. Lemma 28 holds for any spherical cap C with an arbitrary
point P on the boundary of the global SES Nt0 as its apex. Therefore, either at least two robots
merge or all robots robots are within distance h/2 of the boundary of Nt0 at the beginning of round
t0 + 2. This means that the radius of Nt0+2 is at least h/2 smaller than that of Nt0 since it is a
SES. By Lemma 20, we have:

h

2
≥ 1

128π ·Rt0
≥ 1

128π ·R0
≥ 1

128π · n

Consequently, it takes at most d2 ·128 ·π ·n2e rounds without merging robots until the radius is less
than 1/2, at which point all robots can see each other, compute the same target and move towards
it in a single round.

Therefore, there can overall be either at most n−1 rounds with merges or O(n2) rounds without
merges until all robots have gathered.
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