Skip to main content

Ontology Design for Pharmaceutical Research Outcomes

  • Conference paper
  • First Online:
Digital Libraries for Open Knowledge (TPDL 2020)

Abstract

The network of scholarly publishing involves generating and exchanging ideas, certifying research, publishing in order to disseminate findings, and preserving outputs. Despite enormous efforts in providing support for each of those steps in scholarly communication, identifying knowledge fragments is still a big challenge. This is due to the heterogeneous nature of the scholarly data and the current paradigm of distribution by publishing (mostly document-based) over journal articles, numerous repositories, and libraries. Therefore, transforming this paradigm to knowledge-based representation is expected to reform the knowledge sharing in the scholarly world. Although many movements have been initiated in recent years, non-technical scientific communities suffer from transforming document-based publishing to knowledge-based publishing. In this paper, we present a model (PharmSci) for scholarly publishing in the pharmaceutical research domain with the goal of facilitating knowledge discovery through effective ontology-based data integration. PharmSci provides machine-interpretable information to the knowledge discovery process. The principles and guidelines of the ontological engineering have been followed. Reasoning-based techniques are also presented in the design of the ontology to improve the quality of targeted tasks for data integration. The developed ontology is evaluated with a validation process and also a quality verification method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/saidfathalla/Science-knowledge-graph-ontologies.

  2. 2.

    https://github.com/ZeynepSay/PharmSci/tree/master/CorpusData.

  3. 3.

    https://scholar.google.com/.

  4. 4.

    https://www.sciencedirect.com/.

  5. 5.

    https://www.w3.org/TR/owl2-overview/.

  6. 6.

    https://bioportal.bioontology.org/.

  7. 7.

    http://www.ontobee.org/.

  8. 8.

    http://www.obofoundry.org/.

  9. 9.

    https://lov.linkeddata.es/dataset/lov/.

  10. 10.

    https://github.com/ZeynepSay/PharmSci/tree/master/CorpusData.

  11. 11.

    https://scigraph.springernature.com/explorer.

  12. 12.

    https://www.nlm.nih.gov/mesh/meshhome.html.

  13. 13.

    https://projects.tib.eu/orkg/.

References

  1. Bandeira, J., Bittencourt, I.I., Espinheira, P., Isotani, S.: Foca: a methodology for ontology evaluation. arXiv preprint arXiv:1612.03353 (2016)

  2. Berners-Lee, T., Fischetti, M.: Weaving the Web: The original design and ultimate destiny of the World Wide Web by its inventor. DIANE Publishing Company (2001)

    Google Scholar 

  3. Brickley, D., Miller, L.: Foaf vocabulary specification, p. 91 (2007)

    Google Scholar 

  4. Brochhausen, M., Schneider, J., Malone, D., Empey, P.E., Hogan, W.R., Boyce, R.D.: Towards a foundational representation of potential drug-drug interaction knowledge. In: First International Workshop on Drug Interaction Knowledge Representation (DIKR-2014) at the International Conference on Biomedical Ontologies (ICBO 2014) (2014)

    Google Scholar 

  5. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  6. Degtyarenko, K., et al.: Chebi: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36, D344–D350 (2007)

    Article  Google Scholar 

  7. Dimou, A., Vahdati, S., Di Iorio, A., Lange, C., Verborgh, R., Mannens, E.: Challenges as enablers for high quality linked data: insights from the semantic publishing challenge. PeerJ. Comput. Sci. 3, e105 (2017)

    Article  Google Scholar 

  8. Dumontier, M., et al.: The semanticscience integrated ontology (sio) for biomedical research and knowledge discovery. J. Biomed. Semant. 5(1), 14 (2014)

    Article  Google Scholar 

  9. Fathalla, S., Auer, S., Lange, C.: Towards the semantic formalization of science. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 2057–2059 (2020)

    Google Scholar 

  10. Fathalla, S., Vahdati, S., Auer, S., Lange, C.: Towards a knowledge graph representing research findings by semantifying survey articles. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds.) TPDL 2017. LNCS, vol. 10450, pp. 315–327. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67008-9_25

    Chapter  Google Scholar 

  11. Fathalla, S., Vahdati, S., Auer, S., Lange, C.: Metadata analysis of scholarly events of computer science, physics, engineering, and mathematics. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.) TPDL 2018. LNCS, vol. 11057, pp. 116–128. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00066-0_10

    Chapter  Google Scholar 

  12. Fathalla, S., Vahdati, S., Auer, S., Lange, C.: Semsur: a core ontology for the semantic representation of research findings. Procedia Comput. Sci. 137, 151–162 (2018)

    Article  Google Scholar 

  13. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering (1997)

    Google Scholar 

  14. Ferrari, S., Cribari-Neto, F.: Beta regression for modelling rates and proportions. J. Appl. Stat. 31(7), 799–815 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fojo, A.T., Ueda, K., Slamon, D.J., Poplack, D., Gottesman, M., Pastan, I.: Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Nat. Acad. Sci. 84(1), 265–269 (1987)

    Article  Google Scholar 

  16. Golbeck, J., Fragoso, G., Hartel, F., Hendler, J., Oberthaler, J., Parsia, B.: The national cancer institute’s thesaurus and ontology. J. Web Semant. First Look 1(1), 4 (2003)

    Google Scholar 

  17. Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies (1995)

    Google Scholar 

  18. Hammond, T., Pasin, M.: The nature. com ontologies portal. In: LISC@ ISWC, pp. 2–14 (2015)

    Google Scholar 

  19. Herrero-Zazo, M., Segura-Bedmar, I., Hastings, J., Martínez, P.: Dinto: using owl ontologies and SWRL rules to infer drug-drug interactions and their mechanisms. J. Chem. Inf. Model. 55(8), 1698–1707 (2015)

    Article  Google Scholar 

  20. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., et al.: SWRL: a semantic web rule language combining owl and ruleml. W3C Member Submission 21(79), 1–31 (2004)

    Google Scholar 

  21. Jaradeh, M.Y., et al.: Open research knowledge graph: next generation infrastructure for semantic scholarly knowledge. In: Proceedings of the 10th International Conference on Knowledge Capture, pp. 243–246 (2019)

    Google Scholar 

  22. Kibbe, W.A., et al.: Disease ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res. 43(D1), D1071–D1078 (2014)

    Article  Google Scholar 

  23. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters 1(4), 4–12 (2015)

    Article  Google Scholar 

  24. Peroni, S., Shotton, D.: The SPAR ontologies. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 119–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_8

    Chapter  Google Scholar 

  25. Proctor, M.: Drools: a rule engine for complex event processing. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 2–2. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34176-2_2

    Chapter  Google Scholar 

  26. Salatino, A.A., Osborne, F., Thanapalasingam, T., Motta, E.: The CSO classifier: ontology-driven detection of research topics in scholarly articles. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) TPDL 2019. LNCS, vol. 11799, pp. 296–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30760-8_26

    Chapter  Google Scholar 

  27. Smith, B., et al.: The obo foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251 (2007)

    Article  Google Scholar 

  28. Vahdati, S., Palma, G., Nath, R.J., Lange, C., Auer, S., Vidal, M.-E.: Unveiling scholarly communities over knowledge graphs. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.) TPDL 2018. LNCS, vol. 11057, pp. 103–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00066-0_9

    Chapter  Google Scholar 

  29. Visser, U., Abeyruwan, S., Vempati, U., Smith, R.P., Lemmon, V., Schürer, S.C.: Bioassay ontology (BAO): a semantic description of bioassays and high-throughput screening results. BMC Bioinform. 12(1), 257 (2011)

    Article  Google Scholar 

  30. Wang, X., Williams, C., Liu, Z.H., Croghan, J.: Big data management challenges in health research–a literature review. Brief. Bioinform. 20(1), 156–167 (2017)

    Article  Google Scholar 

  31. Weibel, S., Kunze, J., Lagoze, C., Wolf, M.: Dublin core metadata for resource discovery. Internet Eng. Task Force RFC 2413(222), 132 (1998)

    Google Scholar 

  32. White, K.: Science and engineering publication output trends: 2017 shows us output level slightly below that of china but the united states maintains lead with highly cited publications. National Science Foundation. Alexandria, VA, National Center for Science and Engineering Statistics (2019)

    Google Scholar 

  33. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by ERC project ScienceGRAPH no. 819536, and the EPSRC grant EP/M025268/1, the WWTF grant VRG18-013, the EC Horizon 2020 grant LAMBDA (GA no. 809965), the CLEOPATRA project (GA no. 812997), and the German national funded BmBF project MLwin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Say .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Say, Z., Fathalla, S., Vahdati, S., Lehmann, J., Auer, S. (2020). Ontology Design for Pharmaceutical Research Outcomes. In: Hall, M., Merčun, T., Risse, T., Duchateau, F. (eds) Digital Libraries for Open Knowledge. TPDL 2020. Lecture Notes in Computer Science(), vol 12246. Springer, Cham. https://doi.org/10.1007/978-3-030-54956-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54956-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54955-8

  • Online ISBN: 978-3-030-54956-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics